题目内容

(2009•大连二模)已知平面内的向量
OA
OB
满足:|
OA
|=|
OB
|=
OA
OB
1的夹角为
π
3
,又
OP
=m
OA
+n
OB
,0≤m≤1,1≤n≤2
,则点P的集合所表示的图形面积为(  )
分析:本题考查的知识点是平面区域的面积,处理的方法是根据条件建立平面直角坐标系,将满足不等式表示的可行域表示出来,从而将P点对应的图形描述出来,即可求解.
解答:解:不妨以O为原点,以OA方向为x轴正方向,建立坐标系,
OA
=(1,0),
OB
=(
1
2
3
2

OP
=m
OA
+n
OB
,0≤m≤1,1≤n≤2,
OP
=(x,y)
OP
=(x,y)=(m+
1
2
n,
3
2
n

x=m+
1
2
n
y=
3
2
n
,∴
m=x-
3
3
y
n=
2
3
3
y

由于0≤m≤1,1≤n≤2,
0≤x-
3
3
y≤1
1≤
2
3
3
y≤2

其表示的平面区域如下图示:
由图可知阴影部分的面积为
3
2
×1
=
3
2

故选B.
点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网