题目内容
已知函数其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;
(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.
(Ⅰ)解:由已知得函数f(x)的定义域为{x|x>1},
当n=2时,
所以
(1)当a>0时,由f′(x)=0得
>1,<1,
此时 f′(x)=.
当x∈(1,x1)时,f′(x)<0,f(x)单调递减;
当x∈(x1,+∞)时,f′(x)>0, f(x)单调递增.
(2)当a≤0时,f′(x)<0恒成立,所以f(x)无极值.
综上所述,n=2时,
当a>0时,f(x)在处取得极小值,极小值为
当a≤0时,f(x)无极值.
(Ⅱ)证法一:因为a=1,所以
当n为偶数时,
令
则 g′(x)=1+>0(x≥2).
所以当x∈[2,+∞]时,g(x)单调递增,
又 g(2)=0
因此≥g(2)=0恒成立,
所以f(x)≤x-1成立.
当n为奇数时,
要证≤x-1,由于<0,所以只需证ln(x-1) ≤x-1,
令 h(x)=x-1-ln(x-1),
则 h′(x)=1-≥0(x≥2),
所以 当x∈[2,+∞]时,单调递增,又h(2)=1>0,
所以当x≥2时,恒有h(x) >0,即ln(x-1)<x-1命题成立.
综上所述,结论成立.
证法二:当a=1时,
当x≥2时,对任意的正整数n,恒有≤1,
故只需证明1+ln(x-1) ≤x-1.
令
则
当x≥2时,≥0,故h(x)在上单调递增,
因此 当x≥2时,h(x)≥h(2)=0,即1+ln(x-1) ≤x-1成立.
故 当x≥2时,有≤x-1.
即f(x)≤x-1.