题目内容

已知椭圆C中心为坐标原点O,焦点在x轴上,短轴长为2
21
,离心率为
1
2

(1)求椭圆C的方程;
(2)直线l:y=kx+m与椭圆C交于不同两点P,Q,且OP⊥OQ,求点O到直线l的距离.
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)

由题意可得
e=
c
a
=
1
2
2b=2
21
a2=b2+c2
,解得
b=
21
c=
7
a2=28

∴椭圆C的方程为
x2
28
+
y2
21
=1

(2)设A(x1,y1),B(x2,y2).
联立
y=kx+m
x2
28
+
y2
21
=1
,消去y得到(3+4k2)x2+8kmx+4m2-84=0.
∵△>0,∴64k2m2-16(3+4k2)(m2-21)=0,化为m2=21+28k2.(*)
x1+x2=
-8km
3+4k2
x1x2=
4m2-84
3+4k2
.(**)
∵OP⊥OQ,∴
OP
OQ
=0

∴x1x2+y1y2=0.
又y1y2=(kx1+m)(kx2+m),
(1+k2)x1x2+km(x1+x2)+m2=0
把(**)代入可得
(1+k2)(4m2-84)
3+4k2
+
-8k2m2
3+4k2
+m2=0

化为m2=12+12k2=12(1+k2),∴
|m|
1+k2
=2
3

∴点O到直线l的距离d=
|m|
1+k2
=2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网