题目内容
已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=
,数列{bn}的前n项的和Sn,则Sn的取值范围为( )
1 |
an |
分析:本题通过递推关系,可以得到
-
=2,即数列{
}是以1为首项,2为公差的等差数列,可求
=
,
=
,通过裂项可求sn=
,当n=1时,s1=
,n→+∞时,sn→
.故可以排除A,C,D答案选B.
an |
2n+1 |
an-1 |
2n-1 |
an |
2n+1 |
an |
2n+1 |
1 |
2n-1 |
1 |
an |
1 |
(2n-1)(2n+1) |
n |
2n+1 |
1 |
3 |
1 |
2 |
解答:解:∵(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
又n>1,等式两端同除以4n2-1得:
-
=2,即数列{
}是以1为首项,2为公差的等差数列.
∴
=1+(n-1)×2=2n-1,
∴
=
=
(
-
),
∴sn=
(1-
+
-
+…+
-
)=
.当n=1时,s1=
;n→+∞时,sn→
∴
≤ sn<
,
故答案为B.
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
又n>1,等式两端同除以4n2-1得:
an |
2n+1 |
an-1 |
2n-1 |
an |
2n+1 |
∴
an |
2n+1 |
∴
1 |
an |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴sn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
n |
2n+1 |
1 |
3 |
1 |
2 |
∴
1 |
3 |
1 |
2 |
故答案为B.
点评:本题考查数列的递推关系与数列极限问题,解题的关键是对条件合理转化,转化为数列{
}是以1为首项,2为公差的等差数列,然后用等差数列求通项的方法求
的通项,裂项之后求和即可.
an |
2n+1 |
1 |
an |
练习册系列答案
相关题目