题目内容

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=
1
an
,数列{bn}的前n项的和Sn,则Sn的取值范围为(  )
分析:本题通过递推关系,可以得到
an
2n+1
-
an-1
2n-1
=2
,即数列{
an
2n+1
}是以1为首项,2为公差的等差数列,可求
an
2n+1
=
1
2n-1
1
an
=
1
(2n-1)(2n+1)
,通过裂项可求sn=
n
2n+1
,当n=1时,s1=
1
3
,n→+∞时,sn
1
2
.故可以排除A,C,D答案选B.
解答:解:∵(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
又n>1,等式两端同除以4n2-1得:
an
2n+1
-
an-1
2n-1
=2
,即数列{
an
2n+1
}是以1为首项,2为公差的等差数列.
an
2n+1
=1+(n-1)×2
=2n-1,
1
an
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴sn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)
=
n
2n+1
当n=1时,s1=
1
3
;n→+∞时,sn
1
2

1
3
≤ sn
1
2

故答案为B.
点评:本题考查数列的递推关系与数列极限问题,解题的关键是对条件合理转化,转化为数列{
an
2n+1
}是以1为首项,2为公差的等差数列,然后用等差数列求通项的方法求
1
an
的通项,裂项之后求和即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网