题目内容
已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*)(1)求证:数列{
an |
2n+1 |
(2)设bn=
1 |
an |
分析:(1)由(2n-1)an+2=(2n+1)an-1+8n2,知∴(2n-1)an-(2n+1)an-1=2(4n2-1),所以{
}是以1为首项,2为公差的等差数列,由此能求出数列{an}的通项an.
(2)由bn=
=
=
(
-
),得Sn=
+
+…+
=
(1-
),由此能求出Sn的取值范围.
an |
2n+1 |
(2)由bn=
1 |
an |
1 |
4n2-1 |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
1 |
a1 |
1 |
a2 |
1 |
an |
1 |
2 |
1 |
2n+1 |
解答:解:(1)∵(2n-1)an+2=(2n+1)an-1+8n2,
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
∴
-
=2,
∴{
}是以1为首项,2为公差的等差数列,
∴an=4n2-1.
(2)由(1)得,bn=
=
=
(
-
),
∴Sn=
+
+…+
=
(1-
),
∴Sn∈[
,
).
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
∴
an |
2n+1 |
an-1 |
2n-1 |
∴{
an |
2n+1 |
∴an=4n2-1.
(2)由(1)得,bn=
1 |
an |
1 |
4n2-1 |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴Sn=
1 |
a1 |
1 |
a2 |
1 |
an |
1 |
2 |
1 |
2n+1 |
∴Sn∈[
1 |
3 |
1 |
2 |
点评:本题考查数列的通项公式和前n项和的求解方法,解题时要注意构造法和裂项求和法的合理运用.
练习册系列答案
相关题目