题目内容

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.
分析:(1)由(2n-1)an+2=(2n+1)an-1+8n2,知∴(2n-1)an-(2n+1)an-1=2(4n2-1),所以{
an
2n+1
}
是以1为首项,2为公差的等差数列,由此能求出数列{an}的通项an
(2)由bn=
1
an
=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,得Sn=
1
a1
+
1
a2
+…+
1
an
=
1
2
(1-
1
2n+1
)
,由此能求出Sn的取值范围.
解答:解:(1)∵(2n-1)an+2=(2n+1)an-1+8n2
∴(2n-1)an-(2n+1)an-1=2(4n2-1),
an
2n+1
-
an-1
2n-1
=2

{
an
2n+1
}
是以1为首项,2为公差的等差数列,
∴an=4n2-1.
(2)由(1)得,bn=
1
an
=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)

Sn=
1
a1
+
1
a2
+…+
1
an
=
1
2
(1-
1
2n+1
)

Sn∈[
1
3
1
2
)
点评:本题考查数列的通项公式和前n项和的求解方法,解题时要注意构造法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网