题目内容

【题目】甲厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得利润是.

1)要使生产该产品小时获得的利润不低于元,求的取值范围;

2)要使生产千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

【答案】(1)3≤x≤10(2)甲厂以6千克/小时的速度生产可使利润最大,最大利润为610000

【解析】

1)根据题意,列不等式求出x的范围即可;

2)设总利润为y,得出y关于x的函数解析式,配方得出最大值即可.

1)由题意可得:2005x+1≥3000

5x14,解得x≥3,又1≤x≤10

3≤x≤10

2)设生产1200千克产品的利润为y

y1005x+11200005)=120000[32]

∴当x6时,y取得最大值610000

故甲厂以6千克/小时的速度生产可使利润最大,最大利润为610000元.

练习册系列答案
相关题目

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网