ÌâÄ¿ÄÚÈÝ
ÒÑÖªÒ»Ôª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£¬c£¾0£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÆäÖÐÒ»¸ö¹«¹²µãµÄ×ø±êΪ£¨c£¬0£©£¬ÇÒµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£®
£¨1£©µ±a=1£¬c=
ʱ£¬Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£»
£¨2£©Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£¨ÓÃa£¬c±íʾ£©£»
£¨3£©ÈôÒÔ¶þ´Îº¯ÊýµÄͼÏóÓë×ø±êÖáµÄÈý¸ö½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪ8£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨4£©Èô²»µÈʽm2-2km+1+b+ac¡Ý0¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨1£©µ±a=1£¬c=
1 |
2 |
£¨2£©Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£¨ÓÃa£¬c±íʾ£©£»
£¨3£©ÈôÒÔ¶þ´Îº¯ÊýµÄͼÏóÓë×ø±êÖáµÄÈý¸ö½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪ8£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨4£©Èô²»µÈʽm2-2km+1+b+ac¡Ý0¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨±¾Ð¡ÌâÂú·Ö£¨14·Ö£©£¬£¨1£©£¨2£©Ð¡ÌâÿÌ⣨3·Ö£©£¬£¨3£©£¨4£©Ð¡ÌâÿÌâ4·Ö£©
£¨1£©µ±a=1£¬c=
ʱ£¬f(x)=x2+bx+
£¬
f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬½»µã£¬
¡ßf(
)=0£¬ÉèÁíÒ»¸ö¸ùΪx2£¬Ôò
x2=
£¬¡àx2=1£¬
Ôò f£¨x£©£¼0µÄ½â¼¯Îª (
£¬1)£®¡£¨3·Ö£©
£¨2£©f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬
¡ßf£¨c£©=0£¬ÉèÁíÒ»¸ö¸ùΪx2£¬Ôòcx2=
¡àx2=
£¬
ÓÖµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£¬Ôò
£¾c£¬
¡àf£¨x£©£¼0µÄ½â¼¯Îª(c£¬
)¡£¨6·Ö£©
£¨3£©ÓÉ£¨2£©µÄf£¨x£©µÄͼÏóÓë×ø±êÖáµÄ½»µã·Ö±ðΪ(c£¬0)£¬(
£¬0)£¬(0£¬c)
ÕâÈý½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪS=
(
-c)c=8£¬¡£¨8·Ö£©
¡àa=
¡Ü
=
¹Êa¡Ê(0£¬
]£®¡£¨10·Ö£©
£¨4£©¡ßf£¨c£©=0£¬¡àac2+bc+c=0£¬
ÓÖ¡ßc£¾0£¬¡àac+b+1=0£¬¡£¨11·Ö£©
Ҫʹm2-2km¡Ý0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬Ôò
µ±m£¾0ʱ£¬m¡Ý£¨2k£©max=2
µ±m£¼0ʱ£¬m¡Ü£¨2k£©min=-2
µ±m=0ʱ£¬02¡Ý2k•0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢
´Ó¶øʵÊýmµÄÈ¡Öµ·¶Î§Îª m¡Ü-2»òm=0»òm¡Ý2£®¡£¨14·Ö£©
£¨1£©µ±a=1£¬c=
1 |
2 |
1 |
2 |
f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬½»µã£¬
¡ßf(
1 |
2 |
1 |
2 |
1 |
2 |
Ôò f£¨x£©£¼0µÄ½â¼¯Îª (
1 |
2 |
£¨2£©f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬
¡ßf£¨c£©=0£¬ÉèÁíÒ»¸ö¸ùΪx2£¬Ôòcx2=
c |
a |
1 |
a |
ÓÖµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£¬Ôò
1 |
a |
¡àf£¨x£©£¼0µÄ½â¼¯Îª(c£¬
1 |
a |
£¨3£©ÓÉ£¨2£©µÄf£¨x£©µÄͼÏóÓë×ø±êÖáµÄ½»µã·Ö±ðΪ(c£¬0)£¬(
1 |
a |
ÕâÈý½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪS=
1 |
2 |
1 |
a |
¡àa=
c |
16+c2 |
c | ||
2
|
1 |
8 |
1 |
8 |
£¨4£©¡ßf£¨c£©=0£¬¡àac2+bc+c=0£¬
ÓÖ¡ßc£¾0£¬¡àac+b+1=0£¬¡£¨11·Ö£©
Ҫʹm2-2km¡Ý0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬Ôò
µ±m£¾0ʱ£¬m¡Ý£¨2k£©max=2
µ±m£¼0ʱ£¬m¡Ü£¨2k£©min=-2
µ±m=0ʱ£¬02¡Ý2k•0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢
´Ó¶øʵÊýmµÄÈ¡Öµ·¶Î§Îª m¡Ü-2»òm=0»òm¡Ý2£®¡£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿