题目内容
.(12分)如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B∥平面D1AC;
(2)求证:平面D1AC⊥平面B1BDD1.
(1)求证:B1B∥平面D1AC;
(2)求证:平面D1AC⊥平面B1BDD1.
证明: (1)设AC∩BD=E,连结D1E,
∵平面ABCD∥平面A1B1C1D1.
∴B1D1∥BE,∵B1D1=BE=,
∴四边形B1D1EB是平行四边形,
所以B1B∥D1E.
又因为B1B?平面D1AC,D1E?平面D1AC,
所以B1B∥平面D1AC ---------------------------------------6分
(2)证明:侧棱DD1⊥平面ABCD,AC?平面ABCD,
∴AC⊥DD1.
∵下底ABCD是正方形,AC⊥BD.
∵DD1与DB是平面B1BDD1内的两条相交直线,
∴AC⊥平面B1BDD1
∵AC?平面D1AC,∴平面D1AC⊥平面B1BDD1.---------------------12分
∵平面ABCD∥平面A1B1C1D1.
∴B1D1∥BE,∵B1D1=BE=,
∴四边形B1D1EB是平行四边形,
所以B1B∥D1E.
又因为B1B?平面D1AC,D1E?平面D1AC,
所以B1B∥平面D1AC ---------------------------------------6分
(2)证明:侧棱DD1⊥平面ABCD,AC?平面ABCD,
∴AC⊥DD1.
∵下底ABCD是正方形,AC⊥BD.
∵DD1与DB是平面B1BDD1内的两条相交直线,
∴AC⊥平面B1BDD1
∵AC?平面D1AC,∴平面D1AC⊥平面B1BDD1.---------------------12分
略
练习册系列答案
相关题目