题目内容

8、如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别为B,D,且AB≠CD.如果增加一个条件就能推出BD⊥EF,给出四个条件:①AC⊥β;②AC⊥EF;③AC与BD在β内的正投影在同一条直线上;④AC与BD在平面β内的正投影所在的直线交于一点.那么这个条件不可能是(  )
分析:逐一判定,(1)∵EF⊥AC;EF⊥AB说明EF⊥面ACDB(2)同(1);
(3)由三垂线定理可知EF⊥AC;EF⊥AB说明EF⊥面ACDB;(4)不正确是显然的,容易推出矛盾结果.
解答:解:(1)、(2)都能说明EF⊥面ACDB;即都能说明EF垂直平面ACBD中的两条相交直线AC、BD;(3)(3)由三垂线定理可知EF⊥AC;EF⊥AB说明EF⊥面ACDB;((4)说明AC、BD 中的两条直线都不垂直EF.否则两条直线重合.
故选D.
点评:本题考查空间直线与平面之间的位置关系,线面垂直和射影等知识,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网