题目内容
已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知|OB|=
|AF|,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.
1 |
2 |
解答:解:设抛物线C:y2=8x的准线为l:x=-2
直线y=k(x+2)(k>0)恒过定点P(-2,0)
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,
点B为AP的中点、连接OB,
则|OB|=
|AF|,
∴|OB|=|BF|,点B的横坐标为1,
故点B的坐标为(1,2
)∴k=
=
,
故选D
直线y=k(x+2)(k>0)恒过定点P(-2,0)
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,
点B为AP的中点、连接OB,
则|OB|=
1 |
2 |
∴|OB|=|BF|,点B的横坐标为1,
故点B的坐标为(1,2
2 |
2
| ||
1-(-2) |
2
| ||
3 |
故选D
点评:本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.
练习册系列答案
相关题目