题目内容

已知数列{an}:a1=1、a2=2、a3=r且an+3=an+2(n∈N*),与数列{bn}:b1=1、b2=0、b3=-1、b4=0且bn+4=bn(n∈N*).记Tn=b1a1+b2a2+b3a3+…+bnan
(1)若a1+a2+a3+…+a9=34,求r的值;
(2)求T12的值,并求证当n∈N*时,T12n=-4n;
(3)已知r>0,且存在正整数m,使得在T12m+1,T12m+2,…,T12m+12中有4项为100.求r的值,并指出哪4项为100.
分析:(1)求出数列的前9项,利用a1+a2+a3+…+a9=34,即可求r的值;
(2)利用Tn=b1a1+b2a2+b3a3+…+bnan.直接求T12的值,然后利用数学归纳法证明,当n∈N*时,T12n=-4n;
(3)写出T12m+1,T12m+2,…,T12m+12的值,判断这12项中的4项为100.然后求出r的值,即可求出哪4项为100.
解答:解:(1)求得a1=1,a2=2,a3=r,a4=3,a5=4,a6=r+2,a7=5,a8=6,a9=r+4
所以由a1+a2+a3+…+a9=34,可得r=
7
3

(2)因为b1=1、b2=0、b3=-1、b4=0且bn+4=bn(n∈N*).
a1=1,a2=2,a3=r,a4=3,a5=4,a6=r+2,a7=5,a8=6,a9=r+4…
T12=b1a1+b2a2+b3a3+…+b12a12=-4,T12n=-4n,
用数学归纳法证明:
当n∈Z+时,T12n=-4n.
①当n=1时,T12=a1-a3+a5-a7+a9-a11=-4,
等式成立
②假设n=k时等式成立,即T12k=-4k,
那么当n=k+1时,
T12(k+1)=T12k+a12k+1-a12k+3+a12k+5-a12k+7+a12k+9-a12k+11
=-4k+(8k+1)-(8k+r)+(8k+4)-(8k+5)+(8k+r+4)-(8k+8)
=-4k-4=-4(k+1),
等式也成立.
根据①和②可以断定:当n∈Z+时,T12n=-4n.
(3)解:T12m=-4m(m≥1).
当n=12m+1,12m+2时,Tn=4m+1;
当n=12m+3,12m+4时,Tn=-4m+1-r;
当n=12m+5,12m+6时,Tn=4m+5-r;
当n=12m+7,12m+8时,Tn=-4m-r;
当n=12m+9,12m+10时,Tn=4m+4;
当n=12m+11,12m+12时,Tn=-4m-4.
∵4m+1是奇数,-4m+1-r,-4m-r,-4m-4均为负数,
∴这些项均不可能取到100.
∴4m+5-r=4m+4=100,解得m=24,r=1.
此时T293,T294,T297,T298为100.
点评:本题考查数学归纳法的证明步骤,数列求和的应用,分析问题解决问题的能力,计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网