题目内容
已知{an}是正数组成的数列,a1=1,且点(an |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn•bn+2<bn+12.
分析:(Ⅰ)将点代入到函数解析式中即可;
(Ⅱ)比较代数式大小时,可以用作差的方法.
(Ⅱ)比较代数式大小时,可以用作差的方法.
解答:解:解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(n-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n-1+2n-2+…+2+1
=
=2n-1
∵bn•bn+2-bn+12=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n-2n+2+1)-(22n+2-2•2n+1+1)
=-2n<0
∴bn•bn+2<bn+12
解法二:
(Ⅰ)同解法一.
(Ⅱ)∵b2=1
bn•bn+2-bn+12=(bn+1-2n)(bn+1+2n+1)-bn+12
=2n+1•bn+1-2n•bn+1-2n•2n+1
=2n(bn+1-2n+1)
=2n(bn+2n-2n+1)
=2n(bn-2n)
=…
=2n(b1-2)
=-2n<0
∴bn•bn+2<bn+12
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(n-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n-1+2n-2+…+2+1
=
1-2n |
1-2 |
∵bn•bn+2-bn+12=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n-2n+2+1)-(22n+2-2•2n+1+1)
=-2n<0
∴bn•bn+2<bn+12
解法二:
(Ⅰ)同解法一.
(Ⅱ)∵b2=1
bn•bn+2-bn+12=(bn+1-2n)(bn+1+2n+1)-bn+12
=2n+1•bn+1-2n•bn+1-2n•2n+1
=2n(bn+1-2n+1)
=2n(bn+2n-2n+1)
=2n(bn-2n)
=…
=2n(b1-2)
=-2n<0
∴bn•bn+2<bn+12
点评:高考考点:本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.
易错提醒:第二问中的比较大小直接做商的话还要说明bn的正负,而往往很多学生不注意.
备考提示:对于递推数列要学生掌握常见求法,至少线性的要懂得处理.
易错提醒:第二问中的比较大小直接做商的话还要说明bn的正负,而往往很多学生不注意.
备考提示:对于递推数列要学生掌握常见求法,至少线性的要懂得处理.
练习册系列答案
相关题目