ÌâÄ¿ÄÚÈÝ
11£®¹ú¼ÒÐÂÎųö°æ¹ãµç×ֵܾçÊÓ¾ç¹ÜÀí˾Õë¶Ô²¿·Ö¿¹Õ½Ìâ²ÄµçÊÓ¾ç´æÔڵĹý¶ÈÓéÀÖ»¯ÏÖÏ󣬾ö¶¨¶Ô¸÷ÎÀÊÓµçÊÓ¾ç»Æ½ðµµÒÑÔ¤²¥µÄ¿¹Õ½¾ç½øÐÐÖØÉó£®ÒÑ֪ȫ¹úÏֽ׶ΰ²ÅÅÔ¤²¥µÄ¿¹Õ½¾ç¹²18²¿£¬ÆäÖС°Å¼ÏñÀࡱ¡¢¡°µýÕ½Àࡱ¡¢¡°ÎäÏÀÀࡱ¡¢¡°°®ÇéÀࡱ¡¢¡°¼ÍʵÀࡱµÈÎåÀà¾ßÌ岿ÊýÈçÏÂ±í£ºÀà±ð | żÏñÀà | µýÕ½Àà | ÎäÏÀÀà | °®ÇéÀà | ¼ÍʵÀà |
²¿Êý | 5 | 3 | 5 | 3 | 2 |
£¨¢ò£©Èô´ÓÖÐÈÎÒâ³éÈ¡2²¿£¬¼ÇÆäÖС°µýÕ½Àࡱ¿¹Õ½¾çµÄ²¿ÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©Éè¡°´ÓÖÐÈÎÒâ³éÈ¡2²¿ÎªÍ¬Ò»Àà±ð¿¹Õ½¾ç¡±ÎªÊ¼þA£¬È»ºóÖ±½ÓÀûÓùŵä¸ÅÐÍÇó½â¸ÅÂʼ´¿É£®
£¨¢ò£©ÒÀÌâÒâÖª£¬¦ÎµÄËùÓпÉÄÜȡֵΪ£º0£¬1£¬2£¬Çó³ö¸ÅÂÊ£¬µÃµ½¦ÎµÄ·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£©Éè¡°´ÓÖÐÈÎÒâ³éÈ¡2²¿ÎªÍ¬Ò»Àà±ð¿¹Õ½¾ç¡±ÎªÊ¼þA£¬Ôò$P£¨A£©=\frac{C_5^2+C_3^2+C_5^2+C_3^2+C_2^2}{{C_{18}^2}}=\frac{3}{17}$£® ¡£¨5·Ö£©
£¨¢ò£©ÒÀÌâÒâÖª£¬¦ÎµÄËùÓпÉÄÜȡֵΪ£º0£¬1£¬2£¬
ÇÒ$P£¨¦Î=0£©=\frac{{C_{15}^2}}{{C_{18}^2}}=\frac{105}{153}=\frac{35}{51}$£¬¡£¨6·Ö£©
$P£¨¦Î=1£©=\frac{{C_{15}^1C_3^1}}{{C_{18}^2}}=\frac{45}{153}=\frac{5}{17}$£¬¡£¨7·Ö£©
$P£¨¦Î=2£©=\frac{{C_{15}^0C_3^2}}{{C_{18}^2}}=\frac{3}{153}=\frac{1}{51}$£® ¡£¨8·Ö£©
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î | 0 | 1 | 2 |
p | $\frac{35}{51}$ | $\frac{5}{17}$ | $\frac{1}{51}$ |
¦ÎµÄÆÚÍûֵΪ£º$E¦Î=0•\frac{35}{51}+1•\frac{5}{17}+2•\frac{1}{51}=\frac{17}{51}=\frac{1}{3}$£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¸Ðµ½¸ßÐ˵ĸÅÂʵÄÇ󷨣¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°ÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | -4 | B£® | 5 | C£® | 9 | D£® | 14 |
A£® | [0£¬e2] | B£® | [0£¬e2£© | C£® | [0£¬e4] | D£® | [0£¬e4£© |