ÌâÄ¿ÄÚÈÝ
Ò»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn£¨n¡Ý4£©¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf£¨i£¬j£©£®£¨1£©ÈôÊý±íÖеÚi £¨1¡Üi¡Ün-3£©ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»
£¨2£©ÒÑÖªf£¨1£¬j£©=4j£¬Çóf£¨i£¬1£©¹ØÓÚiµÄ±í´ïʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬bi=
1 |
aiai+1 |
1 |
3 |
1 |
4 |
1 |
3 |
·ÖÎö£º£¨1£©Ò×ÖªÊý±íÖеÚi+1ÐеÄÊýÒÀ´ÎËù×é³ÉÊýÁеÄͨÏîΪf£¨i+1£¬j£©£¬ÔÙÓɵȲîÊýÁж¨ÒåÖ¤Ã÷£»
£¨2£©f£¨1£¬j£©=4jÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ¿ÉÇó½â£»
£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai½ø¶øÇóµÃbi£¬Áîg£¨i£©=2i£¬ÇóµÃsn·ÅËõ̽Çó£®
£¨2£©f£¨1£¬j£©=4jÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ¿ÉÇó½â£»
£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai½ø¶øÇóµÃbi£¬Áîg£¨i£©=2i£¬ÇóµÃsn·ÅËõ̽Çó£®
½â´ð£º½â£º£¨1£©Êý±íÖеÚi+1ÐеÄÊýÒÀ´ÎËù×é³ÉÊýÁеÄͨÏîΪf£¨i+1£¬j£©£¬
ÔòÓÉÌâÒâ¿ÉµÃf£¨i+1£¬j+1£©-f£¨i+1£¬j£©
=[f£¨i£¬j+1£©+f£¨i£¬j+2£©]-[f£¨i£¬j£©+f£¨i£¬j+1£©]
=f£¨i£¬j+2£©-f£¨i£¬j£©=2d£¨ÆäÖÐdΪµÚiÐÐÊýËù×é³ÉµÄÊýÁеĹ«²î£©£¨4·Ö£©
£¨2£©¡ßf£¨1£¬j£©=4j
¡àµÚÒ»ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ£¬
¿ÉÖªÊý±íÖÐÈÎÒ»ÐеÄÊý£¨²»ÉÙÓÚ3¸ö£©¶¼ÒÀ´Î³ÉµÈ²îÊýÁУ®
ÉèµÚiÐеÄÊý¹«²îΪdi£¬Ôòdi+1=2di£¬Ôòdi=d1¡Á2i-1=4¡Á2i-1=2i+1
ËùÒÔf£¨i£¬1£©=f£¨i-1£¬1£©+f£¨i-1£¬2£©=2f£¨i-1£¬1£©+2i
=2[2f£¨i-2£¬1£©+2i-1]+2i=22f£¨i-2£¬1£©+2¡Á2i
=2i-1f£¨1£¬1£©+£¨i-1£©¡Á2i=2i-1¡Á4+£¨i-1£©¡Á2i=2i+1+£¨i-1£©¡Á2i=£¨i+1£©¡Á2i£¨10·Ö£©
£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai=
+1=2i+1
ËùÒÔbi=
=
=
(
-
)
Áîg£¨i£©=2i£¬Ôòbig(i)=
-
£¬ËùÒÔSn=
-
£¼
ҪʹµÃSn£¾m£¬¼´
-
£¾m£¬Ö»Òª
£¼
-m=
£¬
¡ßm¡Ê(
£¬
)£¬¡à0£¼1-3m£¼
£¬ËùÒÔÖ»Òª2n+1+1£¾
£¬
¼´Ö»Òªn£¾log2(
-1)-1£¬ËùÒÔ¿ÉÒÔÁî¦Ë=log2(
-1)-1
Ôòµ±n£¾¦Ëʱ£¬¶¼ÓÐSn£¾m£®ËùÒÔÊʺÏÌâÉèµÄÒ»¸öº¯ÊýΪg£¨x£©=2x£¨16·Ö£©
ÔòÓÉÌâÒâ¿ÉµÃf£¨i+1£¬j+1£©-f£¨i+1£¬j£©
=[f£¨i£¬j+1£©+f£¨i£¬j+2£©]-[f£¨i£¬j£©+f£¨i£¬j+1£©]
=f£¨i£¬j+2£©-f£¨i£¬j£©=2d£¨ÆäÖÐdΪµÚiÐÐÊýËù×é³ÉµÄÊýÁеĹ«²î£©£¨4·Ö£©
£¨2£©¡ßf£¨1£¬j£©=4j
¡àµÚÒ»ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ£¬
¿ÉÖªÊý±íÖÐÈÎÒ»ÐеÄÊý£¨²»ÉÙÓÚ3¸ö£©¶¼ÒÀ´Î³ÉµÈ²îÊýÁУ®
ÉèµÚiÐеÄÊý¹«²îΪdi£¬Ôòdi+1=2di£¬Ôòdi=d1¡Á2i-1=4¡Á2i-1=2i+1
ËùÒÔf£¨i£¬1£©=f£¨i-1£¬1£©+f£¨i-1£¬2£©=2f£¨i-1£¬1£©+2i
=2[2f£¨i-2£¬1£©+2i-1]+2i=22f£¨i-2£¬1£©+2¡Á2i
=2i-1f£¨1£¬1£©+£¨i-1£©¡Á2i=2i-1¡Á4+£¨i-1£©¡Á2i=2i+1+£¨i-1£©¡Á2i=£¨i+1£©¡Á2i£¨10·Ö£©
£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai=
f(i£¬1) |
i+1 |
ËùÒÔbi=
1 |
aiai+1 |
1 |
(2i+1)(2i+1+1) |
1 |
2i |
1 |
2i+1 |
1 |
2i+1+1 |
Áîg£¨i£©=2i£¬Ôòbig(i)=
1 |
2i+1 |
1 |
2i+1+1 |
1 |
3 |
1 |
2n+1+1 |
1 |
3 |
ҪʹµÃSn£¾m£¬¼´
1 |
3 |
1 |
2n+1+1 |
1 |
2n+1+1 |
1 |
3 |
1-3m |
3 |
¡ßm¡Ê(
1 |
3 |
1 |
4 |
1 |
4 |
3 |
1-3m |
¼´Ö»Òªn£¾log2(
3 |
1-3m |
3 |
1-3m |
Ôòµ±n£¾¦Ëʱ£¬¶¼ÓÐSn£¾m£®ËùÒÔÊʺÏÌâÉèµÄÒ»¸öº¯ÊýΪg£¨x£©=2x£¨16·Ö£©
µãÆÀ£º±¾Ìâͨ¹ýÊý±í¿¼²éµÈ²îÊýÁеÄͨÏʽ¼°¶¨Ò壮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿