题目内容

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{2b-c}{a}=\frac{cosC}{cosA}$
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b2+c2的最大值.

分析 (Ⅰ)利用正弦定理,结合和角的正弦公式,即可得出结论.
(Ⅱ)由已知及余弦定理可得:b2+c2=3+bc,结合基本不等式可得3≥bc,即可得解.

解答 解:(Ⅰ)由$\frac{2b-c}{a}=\frac{cosC}{cosA}$,
利用正弦定理可得2sinBcosA-sinCcosA=sinAcosC,
化为2sinBcosA=sin(C+A)=sinB,
∵sinB≠0,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(Ⅱ)∵a=$\sqrt{3}$,
∴由余弦定理可得:3=b2+c2-2bccosA=3=b2+c2-bc,可得:b2+c2=3+bc,
又∵b2+c2≥2bc,可得3+bc≥2bc,解得:3≥bc,
∴b2+c2=3+bc≤3+3=6,即b2+c2的最大值是6.

点评 本题考查正弦定理,和角的正弦公式,余弦定理,基本不等式的综合应用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网