题目内容

13、某班有学生50人,其中参加数学小组的有25人,参加物理小组的有32人,则两个小组都参加的人数的范围是
[7,25]
分析:此类问题只进行空洞的分析,很难找到解决问题的切入点,但若能直观地将个部分人数用韦恩图展示出来,则问题将迎刃而解.画出表示参加数学、物理小组集合的Venn图,结合图形进行分析求解即可.
解答:解:由条件知,每名同学至多参加两个小组,
设参加数学、物理小组的人数构成的集合分别为A,B,
则card(A)=25,card(B)=32,
由公式card(A∪B)=card(A)+card(B)-card(A∩B)
知card(A∪B)=25+32-card(A∩B)
又card(A∪B)≤50,
∴card(A∩B)≥7,
且card(A∩B)≤25,
则两个小组都参加的人数的范围是[7,25].
故答案为:[7,25].
点评:本小题主要考查Venn图表达集合的关系及运算、Venn图的应用、集合中元素的个数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网