题目内容

已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(
2
-1),求椭圆方程.
∵椭圆的中心在原点,焦点在x轴上,
∴设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
设短轴的两个端点分别为A、B,左右焦点分别为F1、F2,连结AF2、BF2
∵一个焦点与短轴两端点连线互相垂直,
∴AF2⊥BF2
根据椭圆的对称性得到△ABF2是等腰直角三角形,可得|OA|=|0F2|.
∴b=c,即
a2-c2
=c…①,
又∵焦点和x轴上的较近端点的距离为4(
2
-1),
∴a-c=4(
2
-1)…②,
联解①②可得a=4
2
,c=4,可得a2=32,b2=c2=16
所求椭圆的方程为
x2
32
+
y2
16
=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网