ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãan+Sn=$\frac{1}{2}$£¨n2+3n£©£¬ÊýÁÐ{bn}Âú×ãbn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬MΪÕýÕûÊý£®£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÈôÊýÁÐ{bn}µÄÇ°2015ÏîµÄºÍT2015¡ÝM£¬ÇóMµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÔËÓÃan=$\left\{\begin{array}{l}{{S}_{1}£¬n=1}\\{{S}_{n}-{S}_{n-1}£¬n£¾1}\end{array}\right.$£¬ÇóµÃa1=1£¬a2=2£¬¹¹ÔìÊýÁеķ½·¨¿ÉµÃan-n=$\frac{1}{2}$[an-1-£¨n-1£©]£¬¼´¿ÉµÃµ½ËùÇóͨÏ
£¨2£©»¯¼òbn=$\sqrt{\frac{{n}^{2}£¨n+1£©^{2}+£¨n+1£©^{2}+{n}^{2}}{{n}^{2}£¨n+1£©^{2}}}$=$\frac{n£¨n+1£©+1}{n£¨n+1£©}$=1+$\frac{1}{n£¨n+1£©}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$£¬ÓÉÁÑÏîÏàÏûÇóºÍ£¬¿ÉµÃÇ°2015ÏîµÄºÍT2015=2016-$\frac{1}{2016}$£¬¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð ½â£º£¨1£©an+Sn=$\frac{1}{2}$£¨n2+3n£©£¬¢Ù¿ÉµÃa1+S1=2a1=2£¬
½âµÃa1=1£¬ÓÖa2+S2=$\frac{1}{2}$£¨22+6£©=5£¬½âµÃa2=2£¬
µ±n£¾1ʱ£¬an-1+Sn-1=$\frac{1}{2}$[£¨n-1£©2+3£¨n-1£©]£¬¢Ú
¢Ù-¢Ú£¬¿ÉµÃ2an-an-1=n+1£¬
±äÐÎΪan-n=$\frac{1}{2}$[an-1-£¨n-1£©]£¬
ÓÉÓÚa1-1=a2-2=0£¬Ôòan-n=0£¬
¹ÊÊýÁÐ{an}µÄͨÏʽan=n£»
£¨2£©bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$=$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{£¨n+1£©^{2}}}$
=$\sqrt{\frac{{n}^{2}£¨n+1£©^{2}+£¨n+1£©^{2}+{n}^{2}}{{n}^{2}£¨n+1£©^{2}}}$=$\frac{n£¨n+1£©+1}{n£¨n+1£©}$=1+$\frac{1}{n£¨n+1£©}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$£¬
Ç°2015ÏîµÄºÍT2015=£¨1+1-$\frac{1}{2}$£©+£¨1+$\frac{1}{2}$-$\frac{1}{3}$£©+£¨1+$\frac{1}{3}$-$\frac{1}{4}$£©+¡+£¨1+$\frac{1}{2015}$-$\frac{1}{2016}$£©
=2016-$\frac{1}{2016}$£¬
¹Ê²»³¬¹ýT2015µÄ×î´óÕûÊýMΪ2015£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏîµÄÇ󷨣¬×¢ÒâÔËÓÃan=$\left\{\begin{array}{l}{{S}_{1}£¬n=1}\\{{S}_{n}-{S}_{n-1}£¬n£¾1}\end{array}\right.$£¬ÒÔ¼°¹¹ÔìÊýÁеÄ˼Ïë·½·¨£¬¿¼²éÁÑÏîÏàÏûÇóºÍµÄ˼Ï룬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | a£¼b£¼c | B£® | b£¼c£¼a | C£® | c£¼a£¼b | D£® | a£¼c£¼b |
A£® | $\frac{4}{5}$ | B£® | -$\frac{4}{5}$ | C£® | $\frac{16}{25}$ | D£® | -$\frac{16}{25}$ |