题目内容

3.已a,b,c分别为△ABC三个内角A,B,C的对边,且3cosC+$\sqrt{3}$sinC=$\frac{3a}{b}$,AC边上的垂直平分线交边AB于点D.
(I)求∠B的大小:
(Ⅱ)若a=2,且△DBC的面积为$\frac{\sqrt{3}}{2}$,求边c的值.

分析 (Ⅰ)根据两角和差的正弦公式以及正弦定理进行化简即可,求∠B的大小;
(Ⅱ)根据a=2,且△DBC的面积为$\frac{\sqrt{3}}{2}$,求出BD,利用余弦定理求出CD,可得AD,即可求边c的值.

解答 解:(I)∵3cosC+$\sqrt{3}$sinC=$\frac{3a}{b}$,
∴3cosC+$\sqrt{3}$sinC=$\frac{3sinA}{sinB}$,
∴3sinBcosC+$\sqrt{3}$sinBsinC=3sin(B+C),
∴3sinBcosC+$\sqrt{3}$sinBsinC=3sinBcosC+3cosBsinC,
∴$\sqrt{3}$sinB=3cosB,
∴tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$;
(Ⅱ)∵a=2,且△DBC的面积为$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}•BD•2•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴BD=1,
∴CD=$\sqrt{1+4-2×1×2×\frac{1}{2}}$=$\sqrt{3}$,
∴$AD=\sqrt{3}$,
∴c=AB=$\sqrt{3}$+1.

点评 本题主要考查余弦定理,三角形面积的计算,根据正弦定理和两角和差的正弦公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网