题目内容

对于函数f(x)=x2-2x,在使f(x)≥M成立的所有常数M中,我们把M的最大值-1叫做f(x)=x2-2x的下确界,则函数g(x)=
x2+1(x+1)2
的下确界为
 
分析:先求导数fˊ(x),然后求出f′(x)=0的值,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,从而得到最值.
解答:解:f(x)=
x2+1
(x+1)2

∴f'(x)=
2(x2-1)
( x+1)4
=0解得x=±1
当x∈(-∞,-1)时,f'(x)>0
当x∈(-1,1)时,f'(x)<0
当x∈(1,+∞)时,f'(x)>0
∴当x=1时函数取极小值,也是最小值
1
2

故答案为:
1
2
点评:本题主要考查了函数的最值及其几何意义,以及分式函数的导数公式,同时考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网