ÌâÄ¿ÄÚÈÝ
£¨2007•½ÒÑô¶þÄ££©Èçͼ£¨1£©Ê¾£¬¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬?³£ÊýA£¬¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐϽ磬ÆäÖÐA³ÆΪº¯ÊýµÄϽ磮£¨Ìáʾ£ºÍ¼£¨1£©¡¢£¨2£©Öеij£ÊýA¡¢B¿ÉÒÔÊÇÕýÊý£¬Ò²¿ÉÒÔÊǸºÊý»òÁ㣩
£¨¢ñ£©ÊÔÅжϺ¯Êýf£¨x£©=x3+
ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇ·ñÓÐϽ磿²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÓÖÈç¾ßÓÐÈçͼ£¨2£©ÌØÕ÷µÄº¯Êý³ÆΪÔÚDÉÏÓÐÉϽ磮ÇëÄãÀà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬¸ø³öº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽçµÄ¶¨Ò壬²¢Åжϣ¨¢ñ£©Öеĺ¯ÊýÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñÓÐÉϽ磿²¢ËµÃ÷ÀíÓÉ£»
£¨¢ó£©Èôº¯Êýf£¨x£©ÔÚDÉϼÈÓÐÉϽçÓÖÓÐϽ磬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓн磬º¯Êýf£¨x£©½Ð×öÓн纯Êý£®ÊÔ̽¾¿º¯Êýf£¨x£©=ax3+
£¨a£¾0£¬b£¾0a£¬bÊdz£Êý£©ÊÇ·ñÊÇ[m£¬n]£¨m£¾0£¬n£¾0£¬m¡¢nÊdz£Êý£©ÉϵÄÓн纯Êý£¿
£¨¢ñ£©ÊÔÅжϺ¯Êýf£¨x£©=x3+
48 |
x |
£¨¢ò£©ÓÖÈç¾ßÓÐÈçͼ£¨2£©ÌØÕ÷µÄº¯Êý³ÆΪÔÚDÉÏÓÐÉϽ磮ÇëÄãÀà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬¸ø³öº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽçµÄ¶¨Ò壬²¢Åжϣ¨¢ñ£©Öеĺ¯ÊýÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñÓÐÉϽ磿²¢ËµÃ÷ÀíÓÉ£»
£¨¢ó£©Èôº¯Êýf£¨x£©ÔÚDÉϼÈÓÐÉϽçÓÖÓÐϽ磬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓн磬º¯Êýf£¨x£©½Ð×öÓн纯Êý£®ÊÔ̽¾¿º¯Êýf£¨x£©=ax3+
b |
x |
·ÖÎö£º£¨I£©º¯Êýf£¨x£©=x3+
ÔÚ£¨0£¬+¡Þ£©ÉÏÓÐϽç32£®ÀûÓõ¼Êý»ò»ù±¾²»µÈʽÇó¼«Ð¡ÖµÄܹ»½øÐÐÅжϣ®
£¨¢ò£©Àà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬º¯ÊýÓÐÉϽç¿ÉÒÔÕâÑù¶¨Ò壺¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬?³£ÊýB£¬¶¼ÓÐf£¨x£©¡ÜB³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽ磬ÆäÖÐB³ÆΪº¯ÊýµÄÉϽ磮ÀûÓú¯Êýf(x)=x3+
ÔÚ£¨-¡Þ£¬0£©ÉÏÓÐϽ缰ÆäÆæżÐÔ¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©Çóµ¼f¡ä(x)=3ax2-
£¬ÀûÓõ¼ÊýÑо¿Æäµ¥µ÷ÐÔ£¬ÔÙ¶Ô×ÖĸmµÄÖµ½øÐзÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½º¯Êýf(x)=ax3+
ÊÇ[m£¬n]ÉϵÄÓн纯Êý£®
48 |
x |
£¨¢ò£©Àà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬º¯ÊýÓÐÉϽç¿ÉÒÔÕâÑù¶¨Ò壺¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬?³£ÊýB£¬¶¼ÓÐf£¨x£©¡ÜB³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽ磬ÆäÖÐB³ÆΪº¯ÊýµÄÉϽ磮ÀûÓú¯Êýf(x)=x3+
48 |
x |
£¨¢ó£©Çóµ¼f¡ä(x)=3ax2-
b |
x2 |
b |
x |
½â´ð£º½â£º£¨¢ñ£©
½â·¨1£º¡ßf¡ä(x)=3x2-
£¬ÓÉf'£¨x£©=0µÃ3x2-
=0£¬x4=16£¬¡ßx¡Ê£¨0£¬+¡Þ£©£¬
¡àx=2£¬-----------------------------£¨2·Ö£©
¡ßµ±0£¼x£¼2ʱ£¬f'£¨x£©£¼0£¬¡àº¯Êýf£¨x£©ÔÚ£¨0£¬2£©ÉÏÊǼõº¯Êý£»
µ±x£¾2ʱ£¬f'£¨x£©£¾0£¬¡àº¯Êýf£¨x£©ÔÚ£¨2£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
¡àx=2ÊǺ¯ÊýµÄÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϵÄ×îСֵµã£¬f(x)min=f(2)=8+
=32
¡à¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬------------------------------------£¨4·Ö£©
¼´ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚ³£ÊýA=32£¬Ê¹µÃ¶Ô?x¡Ê£¨0£¬+¡Þ£©¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬
¡àº¯Êýf(x)=x3+
ÔÚ£¨0£¬+¡Þ£©ÉÏÓÐϽ磮-----------------------------£¨5·Ö£©
[½â·¨2£º¡ßx£¾0¡àf(x)=x3+
=x3+
+
+
¡Ý4
=32
µ±ÇÒ½öµ±x3=
¼´x=2ʱ¡°=¡±³ÉÁ¢
¡à¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬
¼´ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚ³£ÊýA=32£¬Ê¹µÃ¶Ô?x¡Ê£¨0£¬+¡Þ£©¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬
¡àº¯Êýf(x)=x3+
ÔÚ£¨0£¬+¡Þ£©ÉÏÓÐϽ磮]
£¨¢ò£©Àà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬º¯ÊýÓÐÉϽç¿ÉÒÔÕâÑù¶¨Ò壺
¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬?³£ÊýB£¬¶¼ÓÐf£¨x£©¡ÜB³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽ磬ÆäÖÐB³ÆΪº¯ÊýµÄÉϽ磮------------------------------£¨7·Ö£©
Éèx£¼0£¬Ôò-x£¾0£¬ÓÉ£¨¢ñ£©Öª£¬¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬
¡àf£¨-x£©¡Ý32£¬¡ßº¯Êýf(x)=x3+
ΪÆ溯Êý£¬¡àf£¨-x£©=-f£¨x£©
¡à-f£¨x£©¡Ý32£¬¡àf£¨x£©¡Ü-32
¼´´æÔÚ³£ÊýB=-32£¬¶Ô?x¡Ê£¨-¡Þ£¬0£©£¬¶¼ÓÐf£¨x£©¡ÜB£¬
¡àº¯Êýf(x)=x3+
ÔÚ£¨-¡Þ£¬0£©ÉÏÓÐÉϽ磮----------------------------£¨9·Ö£©
£¨¢ó£©¡ßf¡ä(x)=3ax2-
£¬
ÓÉf'£¨x£©=0µÃ3ax2-
=0£¬¡ßa£¾0£¬b£¾0
¡àx4=
£¬¡ß[m£¬n]?£¨0£¬+¡Þ£©£¬¡àx=
£¬--------------------------------£¨10·Ö£©
¡ßµ±0£¼x£¼
ʱ£¬f'£¨x£©£¼0£¬¡àº¯Êýf£¨x£©ÔÚ£¨0£¬
£©ÉÏÊǼõº¯Êý£»
µ±x£¾
ʱ£¬f'£¨x£©£¾0£¬¡àº¯Êýf£¨x£©ÔÚ£¨
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
¡àx=
ÊǺ¯ÊýµÄÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϵÄ×îСֵµã£¬f(
)=a(
)3+
=
------------------------------£¨11·Ö£©
¢Ùµ±m¡Ý
ʱ£¬º¯Êýf£¨x£©ÔÚ[m£¬n]ÉÏÊÇÔöº¯Êý£»
¡àf£¨m£©¡Üf£¨x£©¡Üf£¨n£©
¡ßm¡¢nÊdz£Êý£¬¡àf£¨m£©¡¢f£¨n£©¶¼Êdz£Êý
Áîf£¨m£©=A£¬f£¨n£©=B£¬
¡à¶Ô?x¡Ê[m£¬n]£¬?³£ÊýA£¬B£¬¶¼ÓÐA¡Üf£¨x£©¡ÜB
¼´º¯Êýf(x)=ax3+
ÔÚ[m£¬n]ÉϼÈÓÐÉϽçÓÖÓÐϽç-------------------------£¨12·Ö£©
¢Úµ± n¡Ü
ʱº¯Êýf£¨x£©ÔÚ[m£¬n]ÉÏÊǼõº¯Êý
¡à¶Ô?x¡Ê[m£¬n]¶¼ÓÐf£¨n£©¡Üf£¨x£©¡Üf£¨m£©
¡àº¯Êýf(x)=ax3+
ÔÚ[m£¬n]ÉÏÓн磮-------------------------£¨13·Ö£©
¢Ûµ±m£¼
£¼nʱ£¬º¯Êýf£¨x£©ÔÚ[m£¬n]ÉÏÓÐ×îСֵf£¨x£©min=f(
)=a(
)3+
=
ÁîA=
£¬ÁîB=f£¨m£©¡¢f£¨n£©ÖеÄ×î´óÕß
Ôò¶Ô?x¡Ê[m£¬n]£¬?³£ÊýA£¬B£¬¶¼ÓÐA¡Üf£¨x£©¡ÜB
¡àº¯Êýf(x)=ax3+
ÔÚ[m£¬n]ÉÏÓн磮
×ÛÉÏ¿ÉÖªº¯Êýf(x)=ax3+
ÊÇ[m£¬n]ÉϵÄÓн纯Êý--------------------£¨14·Ö£©
½â·¨1£º¡ßf¡ä(x)=3x2-
48 |
x2 |
48 |
x2 |
¡àx=2£¬-----------------------------£¨2·Ö£©
¡ßµ±0£¼x£¼2ʱ£¬f'£¨x£©£¼0£¬¡àº¯Êýf£¨x£©ÔÚ£¨0£¬2£©ÉÏÊǼõº¯Êý£»
µ±x£¾2ʱ£¬f'£¨x£©£¾0£¬¡àº¯Êýf£¨x£©ÔÚ£¨2£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
¡àx=2ÊǺ¯ÊýµÄÔÚÇø¼ä£¨0£¬+¡Þ£©ÉϵÄ×îСֵµã£¬f(x)min=f(2)=8+
48 |
2 |
¡à¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬------------------------------------£¨4·Ö£©
¼´ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚ³£ÊýA=32£¬Ê¹µÃ¶Ô?x¡Ê£¨0£¬+¡Þ£©¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬
¡àº¯Êýf(x)=x3+
48 |
x |
[½â·¨2£º¡ßx£¾0¡àf(x)=x3+
48 |
x |
16 |
x |
16 |
x |
16 |
x |
4 | x3•
| ||||||
µ±ÇÒ½öµ±x3=
16 |
x |
¡à¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬
¼´ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚ³£ÊýA=32£¬Ê¹µÃ¶Ô?x¡Ê£¨0£¬+¡Þ£©¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬
¡àº¯Êýf(x)=x3+
48 |
x |
£¨¢ò£©Àà±Èº¯ÊýÓÐϽçµÄ¶¨Ò壬º¯ÊýÓÐÉϽç¿ÉÒÔÕâÑù¶¨Ò壺
¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬?³£ÊýB£¬¶¼ÓÐf£¨x£©¡ÜB³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐÉϽ磬ÆäÖÐB³ÆΪº¯ÊýµÄÉϽ磮------------------------------£¨7·Ö£©
Éèx£¼0£¬Ôò-x£¾0£¬ÓÉ£¨¢ñ£©Öª£¬¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý32£¬
¡àf£¨-x£©¡Ý32£¬¡ßº¯Êýf(x)=x3+
48 |
x |
¡à-f£¨x£©¡Ý32£¬¡àf£¨x£©¡Ü-32
¼´´æÔÚ³£ÊýB=-32£¬¶Ô?x¡Ê£¨-¡Þ£¬0£©£¬¶¼ÓÐf£¨x£©¡ÜB£¬
¡àº¯Êýf(x)=x3+
48 |
x |
£¨¢ó£©¡ßf¡ä(x)=3ax2-
b |
x2 |
ÓÉf'£¨x£©=0µÃ3ax2-
b |
x2 |
¡àx4=
b |
3a |
4 |
| ||
¡ßµ±0£¼x£¼
4 |
| ||
4 |
| ||
µ±x£¾
4 |
| ||
4 |
| ||
¡àx=
4 |
| ||
4 |
| ||
4 |
| ||
b | |||||
|
4 |
3 |
4 | 3ab3 |
¢Ùµ±m¡Ý
4 |
| ||
¡àf£¨m£©¡Üf£¨x£©¡Üf£¨n£©
¡ßm¡¢nÊdz£Êý£¬¡àf£¨m£©¡¢f£¨n£©¶¼Êdz£Êý
Áîf£¨m£©=A£¬f£¨n£©=B£¬
¡à¶Ô?x¡Ê[m£¬n]£¬?³£ÊýA£¬B£¬¶¼ÓÐA¡Üf£¨x£©¡ÜB
¼´º¯Êýf(x)=ax3+
b |
x |
¢Úµ± n¡Ü
4 |
| ||
¡à¶Ô?x¡Ê[m£¬n]¶¼ÓÐf£¨n£©¡Üf£¨x£©¡Üf£¨m£©
¡àº¯Êýf(x)=ax3+
b |
x |
¢Ûµ±m£¼
4 |
| ||
4 |
| ||
4 |
| ||
b | |||||
|
4 |
3 |
4 | 3ab3 |
ÁîA=
4 |
3 |
4 | 3ab3 |
Ôò¶Ô?x¡Ê[m£¬n]£¬?³£ÊýA£¬B£¬¶¼ÓÐA¡Üf£¨x£©¡ÜB
¡àº¯Êýf(x)=ax3+
b |
x |
×ÛÉÏ¿ÉÖªº¯Êýf(x)=ax3+
b |
x |
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÇó±ÕÇø¼äÉϺ¯ÊýµÄ×îÖµµÄÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿