题目内容
化简下列各式:
(1)
-
(2)
÷(1-2
)
(1)
x-2+y-2 | ||||
x-
|
x-2-y-2 | ||||
x-
|
(2)
a
| |||||||
a
|
3 |
| ||
分析:(1)利用立方和与立方差公式化简分子即可得出;
(2)利用指数幂的运算性质及其立方差公式即可得出.
(2)利用指数幂的运算性质及其立方差公式即可得出.
解答:解:(1)原式=
-
=(x-
)2-x-
•y-
+(y-
)2-[(x-
)2+x-
•y-
+(y-
)2]
=-2x-
•y-
.
(2)原式=
•
•a
=
=a.
(x-
| ||||
x-
|
(x-
| ||||
x-
|
=(x-
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
=-2x-
2 |
3 |
2 |
3 |
(2)原式=
a
| ||||||||
(a
|
a
| ||||
a
|
1 |
3 |
=
a(a-8b) | ||||
(a
|
=a.
点评:熟练掌握指数幂的运算性质及其立方差与立方和公式是解题的关键.
练习册系列答案
相关题目