题目内容
若y=cos2x+2psinx+q有最大值9和最小值6,求实数p,q的值.分析:先令sinx=t将y=cos2x+2psinx+q转化为关于t且t∈[-1,1]的一元二次函数,然后求出其对称轴,再对p的值进行讨论从而可确定函数在[-1,1]上的单调性,进而根据其最值可求出p,q的值.
解答:解:令sinx=t,t∈[-1,1],
y=1-sin2x+2psinx+q
y=-(sinx-p)2+p2+q+1=-(t-p)2+p2+q+1
∴y=-(t-p)2+p2+q+1,对称轴为t=p
当p<-1时,[-1,1]是函数y的递减区间,
ymax=y|t=-1=(-1-p)2+p2+q+1=9,ymin=y|t=1=(1-p)2+p2+q+1=6,
得p=
,q=
,与p<-1矛盾;
当p>1时,[-1,1]是函数y的递增区间,
ymax=y|t=1=2p+q=9,ymin=y|t=-1=-2p+q=6,
得p=
,q=
,与p>1矛盾;
当-1≤p≤1时,ymax=y|t=p=p2+q+1=9,
再当p≥0,ymin=y|t=-1=-2p+q=6,得p=
-1,q=4+2
;
当p<0,ymin=y|t=1=2p+q=6,得p=-
+1,q=4+2
∴p=±(
-1),q=4+2
.
y=1-sin2x+2psinx+q
y=-(sinx-p)2+p2+q+1=-(t-p)2+p2+q+1
∴y=-(t-p)2+p2+q+1,对称轴为t=p
当p<-1时,[-1,1]是函数y的递减区间,
ymax=y|t=-1=(-1-p)2+p2+q+1=9,ymin=y|t=1=(1-p)2+p2+q+1=6,
得p=
3 |
4 |
15 |
2 |
当p>1时,[-1,1]是函数y的递增区间,
ymax=y|t=1=2p+q=9,ymin=y|t=-1=-2p+q=6,
得p=
3 |
4 |
15 |
2 |
当-1≤p≤1时,ymax=y|t=p=p2+q+1=9,
再当p≥0,ymin=y|t=-1=-2p+q=6,得p=
3 |
3 |
当p<0,ymin=y|t=1=2p+q=6,得p=-
3 |
3 |
∴p=±(
3 |
3 |
点评:本题主要考查同角三角函数的基本关系和一元二次函数的单调性以及最值的问题.考查考生的基础知识的综合运用能力.

练习册系列答案
相关题目
下面四个命题:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②若命题P:所有能被3整除的整数都是奇数,则¬P:存在能被3整除的数不是奇数;
③将函数y=sin(2x-
)的图象向右平移
个单位,所得图象对应的函数解析式为y=-cos2x;
④在一个2×2列联表中,由计算得K2=13,079,则其两个变量有关系的可能性是90%.
其中所有正确的命题序号是 .
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②若命题P:所有能被3整除的整数都是奇数,则¬P:存在能被3整除的数不是奇数;
③将函数y=sin(2x-
π |
6 |
π |
6 |
④在一个2×2列联表中,由计算得K2=13,079,则其两个变量有关系的可能性是90%.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |