题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值时角A,B的大小.

【答案】
(1)解:由正弦定理得 sinCsinA=sinAcosC,

因为0<A<π,所以sinA>0.从而sinC=cosC,

又cosC≠0,所以tanC=1,C=


(2)解:有(1)知,B= ﹣A,于是

sinA﹣cos(B+ )= sinA+cosA

=2sin(A+ ).

因为0<A< ,所以 <A+

从而当A+ = ,即A=

2sin(A+ )取得最大值2.

综上所述 sinA﹣cos(B+ )的最大值为2,此时A= ,B=


【解析】(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C= .(2)B= ﹣A,化简 sinA﹣cos(B+ ),通过0<A< ,推出 <A+ ,求出2sin(A+ )取得最大值2.得到A,B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网