题目内容

在△ABC中,AB=5,AC=7,∠A=60°,G为重心,过G的平面α与BC平行,AB∩α=M,AC∩α=N,则MN=
 
分析:由已知AB=5,AC=7,∠A=60利用余弦定理可求BC,根据线面平行的性质定理可得,MN∥BC,且G是△ABC的重心可得MN=
2
3
BC
从而可求MN
解答:精英家教网解:如图,在△ABC中,由余弦定理知BC=
39

∵BC∥α,AB∩α=M,AC∩α=N,
根据线面平行的性质定理可得,MN∥BC,
又G是△ABC的重心,
∴MN=
2
3
BC=
2
39
3

故答案为:
2
39
3
点评:本题主要考查了余弦定理解决三角形中两边和夹角求第三边,直线与平面平行的性质定理的运用,三角形的重心的性质等知识的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网