题目内容
已知p:方程x2+mx+1=0有两个不相等的负根;q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.
m≥3或1<m≤2.
解析
设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.
(本小题12分) 已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分条件,求实数m的取值范围.
命题P:函数内单调递减;命题Q:曲线轴交于不同的两点. 如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.
命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.
(本小题满分12分)已知; q:,若是的充分不必要条件,求实数的取值范围。
(本题满分12分), (1)若命题T为真命题,求c的取值范围。(2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
(本小题12分)命题:关于的不等式对于一切恒成立,命题:函数是增函数,若为真,为假,求实数的取值范围;
已知p:实数x满足,其中a<0;q:实数x满足且的必要不充分条件,求a的范围.