题目内容
如图,已知△ABC和△DBC所在的平面互相垂直,AB=BC=BD,∠CBA=∠DBC=120°,求:(1)AD与BC所成的角;
(2)AD和平面BCD所成的角;
(3)二面角A-BD-C的大小的余弦值.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_ST/images0.png)
【答案】分析:(1)作AO⊥BC于点O,连DO,以点O为原点,OD,OC,OA的方向分别为x轴、y轴、z轴方向,建立坐标系,通过
与
的夹角去求AD与BC所成的角.
(2)通过求
与平面BCD的夹角去求AD和平面BCD所成的角.
(3)求出平面CBD的一个法向量为
以及平面ABD的一个法向量为
,求出两法向量的余弦值即可得到平面CDF与平面ABCD所成角的余弦值.
解答:解:(1)设AB=1,作AO⊥BC于点O,连DO,以点O为原点,OD,OC,OA的方向分别为x轴、y轴、z轴方向,建立坐标系,得下列坐标:
O(0,0,0)D(
,0,0)B(0,
,0)C(0,
,0)A(0,0,
)
=(
,0,-
),
•
=(
,0,-
)•(0,1,0)=0
所以AD与BC所成角等于90°.
(2)由(1)可知
=(0,0,1)为平面BCD的一个法向量
|cos<
,
>|=|
|=|-
|=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/21.png)
∴直线AD与平面BCD所成角的大小90°-45°=45°
(3)设平面ABD的法向量为
=(x,y,1)则
(x,y,1)•
=(x,y,1)•(0,
,-
)=0
(x,y,1)•
=(x,y,1)•(
,0,-
)=0
解得 x=1,y=
,
则
=(1,
,1)
显然(0,0,1)为平面BCD的法向量.
设二面角A-BD-C大小为θ,则
|cosθ|=
=
=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/34.png)
又 二面角A-BD-C为钝二面角
因此,二面角的余弦为
.
(第一问中含建立坐标系2分)
点评:本题考查空间角的计算,二面角求解,考查转化的思想方法,计算能力.利用空间向量的知识,则使问题论证变成了代数运算,使人们解决问题更加方便.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/1.png)
(2)通过求
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/2.png)
(3)求出平面CBD的一个法向量为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/4.png)
解答:解:(1)设AB=1,作AO⊥BC于点O,连DO,以点O为原点,OD,OC,OA的方向分别为x轴、y轴、z轴方向,建立坐标系,得下列坐标:
O(0,0,0)D(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/8.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/13.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/14.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/15.png)
所以AD与BC所成角等于90°.
(2)由(1)可知
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/16.png)
|cos<
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/17.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/20.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/21.png)
∴直线AD与平面BCD所成角的大小90°-45°=45°
(3)设平面ABD的法向量为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/22.png)
(x,y,1)•
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/24.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/25.png)
(x,y,1)•
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/26.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/28.png)
解得 x=1,y=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/29.png)
则
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/31.png)
显然(0,0,1)为平面BCD的法向量.
设二面角A-BD-C大小为θ,则
|cosθ|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/32.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/33.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/34.png)
又 二面角A-BD-C为钝二面角
因此,二面角的余弦为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175109443767294/SYS201311031751094437672015_DA/35.png)
(第一问中含建立坐标系2分)
点评:本题考查空间角的计算,二面角求解,考查转化的思想方法,计算能力.利用空间向量的知识,则使问题论证变成了代数运算,使人们解决问题更加方便.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目