题目内容
(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为
22.(
(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 [ ]
A 85 B 56 C 49 D 28
(2009湖南卷理)设函数在(,+)内有定义。对于给定的正数K,定义函数
取函数=。若对任意的,恒有=,则
A.K的最大值为2 B. K的最小值为2
C.K的最大值为1 D. K的最小值为1 【 】
(2009湖南卷理)将正ABC分割成(≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,
(2009湖南卷理)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、、,现在3名工人独立地从中任选一个项目参与建设。
(I)求他们选择的项目所属类别互不相同的概率;
(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。
如图4,在正三棱柱中,
D是的中点,点E在上,且。
(I) 证明平面平面
(II) 求直线和平面所成角的正弦值。