题目内容

(2013•辽宁)选修4-4:坐标系与参数方程
在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1与C2交点的极坐标;
(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为
x=t3+a
y=
b
2
t3+1
(t∈R为参数),求a,b的值.
分析:(I)先将圆C1,直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;
(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程为x-y+2=0,由参数方程可得y=
b
2
x-
ab
2
+1,从而构造关于a,b的方程组,解得a,b的值.
解答:解:(I)圆C1,直线C2的直角坐标方程分别为 x2+(y-2)2=4,x+y-4=0,
x2+(y-2)2=4
x+y-4=0
x=0
y=4
x=2
y=2

∴C1与C2交点的极坐标为(4,
π
2
).(2
2
π
4
).
(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),
故直线PQ的直角坐标方程为x-y+2=0,
由参数方程可得y=
b
2
x-
ab
2
+1,
b
2
=1
-
ab
2
+1=2

解得a=-1,b=2.
点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网