题目内容
已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.
{x|-7<x<3}
解析
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减.给出以下四个命题:①f(2)=0;②x=-4为函数y=f(x)图像的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.以上命题中所有正确命题的序号为________.
定义在实数集上的偶函数f(x)满足f(x+2)=f(x),且f(x)在[-3,-2]上单调递减,又α,β是锐角三角形的两内角,则f(sin α)与f(cos β)的大小关系是________.
函数y=f(x)是偶函数,则在点(-a,f(a))、(-a,-f(-a))、(-a,-f(a))、(a,-f(-a))中,一定在函数y=f(x)图象上的点是________.
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2则x1+x2=-8.以上命题中所有正确命题的序号为________.
对于每一个实数 ,取,,三个值中最小的值,则的最大值为_______
已知函数f(x)=-的定义域为R,则f(x)的值域是 .
设a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为________.
已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.