题目内容

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.

(1)求f(0)的值.

(2)求f(x)的解析式.

(3)已知a∈R,设P:当0<x<时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).

答案:
解析:

  解:(1)令,则由已知

  ∴;1分

  (2)令,则

  又∵

  ∴;3分

  (3)不等式

  即;4分

  当时,

  又恒成立

  故;6分

  

  又上是单调函数,故有;7

  ∴;8分

  ∴;9分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网