题目内容
据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
其中,5月1日到5月3日为指定参观日,5月4日到5月7日为非指定参观日.
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 21 | 23 | 13 | 15 | 9 | 12 | 14 |
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
(Ⅰ)总体平均数为
(21+23+13+15+9+12+14)≈15.3
(Ⅱ)由题意知本题是一个古典概型,
设A表示事件“样本平均数与总体平均数之差的绝对值不超过2万”
试验发生包含的事件是从非指定参观日中抽取2天可能的基本事件有:(15,9),
(15,12),(15,14),(9,12),(9,14),(12,14)共有6个结果,
满足条件的事件A包含的基本事件有:(15,12),(15,14),共2个.
∴根据古典概型概率公式得到P(A)=
=
1 |
7 |
(Ⅱ)由题意知本题是一个古典概型,
设A表示事件“样本平均数与总体平均数之差的绝对值不超过2万”
试验发生包含的事件是从非指定参观日中抽取2天可能的基本事件有:(15,9),
(15,12),(15,14),(9,12),(9,14),(12,14)共有6个结果,
满足条件的事件A包含的基本事件有:(15,12),(15,14),共2个.
∴根据古典概型概率公式得到P(A)=
2 |
6 |
1 |
3 |
练习册系列答案
相关题目
据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
其中,5月1日到5月3日为指定参观日,5月4日到5月7日为非指定参观日.
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 21 | 23 | 13 | 15 | 9 | 12 | 14 |
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 21 | 23 | 13 | 15 | 9 | 12 | 14 |
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
其中,5月1日到5月3日为指定参观日,5月4日到5月7日为非指定参观日.
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 21 | 23 | 13 | 15 | 9 | 12 | 14 |
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.