题目内容
【题目】已知集合A={x|x2+3x﹣10<0},B={x|x2﹣2x﹣3≥0},全集为R,求A∩B和A∪(RB)
【答案】解:集合A={x|x2+3x﹣10<0}={x|﹣5<x<2}, B={x|x2﹣2x﹣3≥0}={x|x≤﹣1或x≥3},
且全集为R,
所以A∩B={x|﹣5<x≤﹣1},
RB={x|﹣1<x<3},
A∪(RB)={x|﹣5<x<3}
【解析】化简集合A、B,根据交集与并集、并集的定义计算即可.
【考点精析】认真审题,首先需要了解交、并、补集的混合运算(求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法).
练习册系列答案
相关题目