ÌâÄ¿ÄÚÈÝ
£¨2012•Ðì»ãÇøһģ£©¶Ô¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨x£©£¬Èô´æÔÚ±ÕÇø¼ä[a£¬b]⊆DºÍ³£ÊýC£¬Ê¹µÃ¶ÔÈÎÒâµÄx¡Ê[a£¬b]¶¼ÓÐf£¨x£©=C£¬ÇÒ¶ÔÈÎÒâµÄx∉[a£¬b]¶¼ÓÐf£¨x£©£¾Cºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÎªÇø¼äDÉϵġ°UÐÍ¡±º¯Êý£®
£¨1£©ÇóÖ¤£ºº¯Êýf£¨x£©=|x-1|+|x-3|ÊÇRÉϵġ°UÐÍ¡±º¯Êý£»
£¨2£©Éèf£¨x£©ÊÇ£¨1£©Öеġ°UÐÍ¡±º¯Êý£¬Èô²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇеÄx¡ÊRºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôº¯Êýg£¨x£©=mx+
ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý£¬ÇóʵÊýmºÍnµÄÖµ£®
£¨1£©ÇóÖ¤£ºº¯Êýf£¨x£©=|x-1|+|x-3|ÊÇRÉϵġ°UÐÍ¡±º¯Êý£»
£¨2£©Éèf£¨x£©ÊÇ£¨1£©Öеġ°UÐÍ¡±º¯Êý£¬Èô²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇеÄx¡ÊRºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôº¯Êýg£¨x£©=mx+
x2+2x+n |
·ÖÎö£º£¨1£©¶ÔÓÚº¯Êýf1£¨x£©=|x-1|+|x-3|£¬ÓûÅжÏÆäÊÇ·ñÊÇ¡°UÐÍ¡±º¯Êý£¬Ö»Ðëf1£¨x£©£¾=2ÊÇ·ñºã³ÉÁ¢£¬ÀûÓÃÈ¥¾ø¶ÔÖµ·ûºÅºó¼´¿ÉÖ¤µÃ£»
£¨2£©²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚ|t-1|+|t-2|¡Üf£¨x£©min£¬µÈ¼ÛÓÚ|t-1|+|t-2|¡Ü2£¬´Ó¶ø¿ÉÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©º¯Êýg£¨x£©=mx+
ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý£¬µÈ¼ÛÓÚx2+2x+n=m2x2-2cmx+c2¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢£¬ÀûÓúãµÈ¹Øϵ£¬¿ÉµÃµ½¹ØÓÚm£¬n£¬cµÄ·½³Ì£¬½â³öËüÃǵÄÖµ£¬×îºóͨ¹ýÑéÖ¤g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý¼´¿É½â¾öÎÊÌ⣮
£¨2£©²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬µÈ¼ÛÓÚ|t-1|+|t-2|¡Üf£¨x£©min£¬µÈ¼ÛÓÚ|t-1|+|t-2|¡Ü2£¬´Ó¶ø¿ÉÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©º¯Êýg£¨x£©=mx+
x2+2x+n |
½â´ð£º½â£º£¨1£©µ±x¡Ê[1£¬3]ʱ£¬f1£¨x£©=x-1+3-x=2£¬
µ±x∉[1£¬3]ʱ£¬f1£¨x£©=|x-1|+|x-3|£¾|x-1+3-x|=2
¹Ê´æÔÚ±ÕÇø¼ä[a£¬b]=[1£¬3]⊆RºÍ³£ÊýC=2·ûºÏÌõ¼þ£¬¡£¨4·Ö£©
ËùÒÔº¯Êýf1£¨x£©=|x-1|+|x-3|ÊÇRÉϵġ°UÐÍ¡±º¯Êý¡£¨5·Ö£©
£¨2£©ÒòΪ²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬
ËùÒÔ|t-1|+|t-2|¡Üf£¨x£©min¡£¨7·Ö£©
ÓÉ£¨1£©¿ÉÖªf£¨x£©min=£¨|x-1|+|x-3|£©min=2¡£¨8·Ö£©
ËùÒÔ|t-1|+|t-2|¡Ü2¡£¨9·Ö£©
½âµÃ£º
¡Üt¡Ü
¡£¨11·Ö£©
£¨3£©ÓÉ¡°UÐÍ¡±º¯Êý¶¨ÒåÖª£¬´æÔÚ±ÕÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃ¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬
¶¼ÓÐg£¨x£©=mx+
=c£¬¼´
=c-mx
ËùÒÔx2+2x+n=£¨c-mx£©2ºã³ÉÁ¢£¬¼´x2+2x+n=m2x2-2cmx+c2¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢¡£¨13·Ö£©
ËùÒÔ
£¬ËùÒÔ
»ò
¡£¨14·Ö£©
¢Ùµ±
ʱ£¬g£¨x£©=x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=2x+1£¾-1ºã³ÉÁ¢£®
´Ëʱ£¬g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý¡£¨16·Ö£©
¢Úµ±
ʱ£¬g£¨x£©=-x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-2x-1¡Ý1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=1£®
´Ëʱ£¬g£¨x£©²»ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý£®£¨12·Ö£©
×ÛÉÏ·ÖÎö£¬m=1£¬n=1ΪËùÇ󡣨18·Ö£©
µ±x∉[1£¬3]ʱ£¬f1£¨x£©=|x-1|+|x-3|£¾|x-1+3-x|=2
¹Ê´æÔÚ±ÕÇø¼ä[a£¬b]=[1£¬3]⊆RºÍ³£ÊýC=2·ûºÏÌõ¼þ£¬¡£¨4·Ö£©
ËùÒÔº¯Êýf1£¨x£©=|x-1|+|x-3|ÊÇRÉϵġ°UÐÍ¡±º¯Êý¡£¨5·Ö£©
£¨2£©ÒòΪ²»µÈʽ|t-1|+|t-2|¡Üf£¨x£©¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬
ËùÒÔ|t-1|+|t-2|¡Üf£¨x£©min¡£¨7·Ö£©
ÓÉ£¨1£©¿ÉÖªf£¨x£©min=£¨|x-1|+|x-3|£©min=2¡£¨8·Ö£©
ËùÒÔ|t-1|+|t-2|¡Ü2¡£¨9·Ö£©
½âµÃ£º
1 |
2 |
5 |
2 |
£¨3£©ÓÉ¡°UÐÍ¡±º¯Êý¶¨ÒåÖª£¬´æÔÚ±ÕÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃ¶ÔÈÎÒâµÄx¡Ê[a£¬b]£¬
¶¼ÓÐg£¨x£©=mx+
x2+2x+n |
x2+2x+n |
ËùÒÔx2+2x+n=£¨c-mx£©2ºã³ÉÁ¢£¬¼´x2+2x+n=m2x2-2cmx+c2¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢¡£¨13·Ö£©
ËùÒÔ
|
|
|
¢Ùµ±
|
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=2x+1£¾-1ºã³ÉÁ¢£®
´Ëʱ£¬g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý¡£¨16·Ö£©
¢Úµ±
|
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-2x-1¡Ý1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=1£®
´Ëʱ£¬g£¨x£©²»ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°UÐÍ¡±º¯Êý£®£¨12·Ö£©
×ÛÉÏ·ÖÎö£¬m=1£¬n=1ΪËùÇ󡣨18·Ö£©
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éº¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²éº¯ÊýµÄ×îÖµ£¬½âÌâµÄ¹Ø¼üÊÇÀûÓúã³ÉÁ¢½áÂÛµÈʽ£¬´Ó¶ø¿ÉµÃ²ÎÊýµÄÖµ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿