题目内容
设F1、F2分别为椭圆C:| x2 |
| a2 |
| y2 |
| b2 |
(1)若椭圆C上的点A(1,
| 3 |
| 2 |
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
| x2 |
| a2 |
| y2 |
| b2 |
分析:(1)由题意知2a=4,把点A(1,
)代入能推导出椭圆C的方程和焦点坐标.
(2)在椭圆
+
=1上取关于原点对称的两点M、N,在该曲线上任取不与M、N重合的动点P,直线PM,PN的斜率存在.那么kPM•kPN=-
.
证明:设椭圆方程是
+
=1(A=a2,B=b2),设M(m,n),则N(-m,-n),又设P(x,y),(x≠±m,),那么
+
=1且
+
=1,由此能够推导出kPM•kPN=
=-
=-
.
| 3 |
| 2 |
(2)在椭圆
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a2 |
证明:设椭圆方程是
| x2 |
| A |
| y2 |
| B |
| m2 |
| A |
| n2 |
| B |
| x2 |
| A |
| y2 |
| B |
| y2-n2 |
| x2-m2 |
| B |
| A |
| b2 |
| a2 |
解答:解:(1)由题意知,2a=4,∴椭圆C的方程为
+
=1,把点A(1,
)代入,得
+
=1,解得b2=3,c2=1,∴椭圆C的方程是
+
=1,焦点坐标是F1(-1,0),F2(1,0)
(2)在椭圆
+
=1上取关于原点对称的两点M、N,在该曲线上任取不与M、N重合的动点P,直线PM,PN的斜率存在.那么kPM•kPN=-
证明:设椭圆方程是
+
=1(A=a2,B=b2),设M(m,n),则N(-m,-n),又设P(x,y),(x≠±m,),那么
+
=1①且
+
=1②
因为kPM•kPN=(
)•(
)=
,由①知:n2=B-
m2,由②y2=B-
x2,所以y2-n2=-
(x2-m2),所以kPM•kPN=
=-
=-
| x2 |
| 4 |
| y2 |
| b2 |
| 3 |
| 2 |
| 1 |
| 4 |
| ||
| b2 |
| x2 |
| 4 |
| y2 |
| 3 |
(2)在椭圆
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a2 |
证明:设椭圆方程是
| x2 |
| A |
| y2 |
| B |
| m2 |
| A |
| n2 |
| B |
| x2 |
| A |
| y2 |
| B |
因为kPM•kPN=(
| y-n |
| x-m |
| y+n |
| x+m |
| y2-n2 |
| x2-m2 |
| B |
| A |
| B |
| A |
| B |
| A |
| y2-n2 |
| x2-m2 |
| B |
| A |
| b2 |
| a2 |
点评:本题考查椭圆的性质及其应用,解题时要认真审题,仔细解答,注意公式的正确选用.
练习册系列答案
相关题目