ÌâÄ¿ÄÚÈÝ
10£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÒÔÍÖÔ²CµÄ×󶥵ãTΪԲÐÄ×÷Ô²T£º£¨x+2£©2+y2=r2£¨r£¾0£©£¬ÉèÔ²TÓëÍÖÔ²C½»ÓÚµãMÓëµãN£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPÊÇÍÖÔ²CÉÏÒìÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÇÒÖ±ÏßMP£¬NP·Ö±ðÓëxÖá½»ÓÚµãR£¬S£¬OΪ×ø±êԵ㣬Çó|OR|+|OS|µÄ×îСֵ£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃa=2£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬y0£©£¬ÇóµÃÖ±ÏßMP£¬NPµÄ·½³Ì£¬Áîy=0£¬ÇóµÃµãR£¬SµÄºá×ø±ê£¬½áºÏM£¬PÂú×ãÍÖÔ²·½³Ì£¬ÇóµÃR£¬SµÄºá×ø±êÖ®»ý£¬ÔÙÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×îСֵ£®
½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬µÃa=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àc=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©µãMÓëµãN¹ØÓÚxÖá¶Ô³Æ£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬y0£©
ÔòÖ±ÏßMPµÄ·½³ÌΪ£ºy-y0=$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$£¨x-x0£©£¬
Áîy=0£¬µÃxR=$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{y}_{0}-{y}_{1}}$£¬Í¬Àí£ºxS=$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{y}_{0}+{y}_{1}}$£¬
¹ÊxRxS=$\frac{{{x}_{1}}^{2}{{y}_{0}}^{2}-{{x}_{0}}^{2}{{y}_{1}}^{2}}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$ £¨**£©
ÓÖµãMÓëµãPÔÚÍÖÔ²ÉÏ£¬¹Êx02=4£¨1-y02£©£¬x12=4£¨1-y12£©£¬
´úÈ루**£©Ê½£¬µÃ£º
xRxS=$\frac{4£¨1-{{y}_{1}}^{2}£©{{y}_{0}}^{2}-4£¨1-{{y}_{0}}^{2}£©{{y}_{1}}^{2}}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$=$\frac{4£¨{{y}_{0}}^{2}-{{y}_{1}}^{2}£©}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$=4
ËùÒÔ|OR|•|OS|=|xR|•|xS|=|xR•xS|=4£¬
|OR|+|OS|¡Ý2$\sqrt{|OR|•|OS|}$=4£¬
µ±ÇÒ½öµ±|OR|=|OS|=2£¬È¡µÃµÈºÅ£®
Ôò|OR|+|OS|µÄ×îСֵΪ4£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬×¢ÒâµãÂú×ãÍÖÔ²·½³Ì£¬Í¬Ê±¿¼²é»ù±¾²»µÈʽµÄÔËÓ㬾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮
A£® | 0 | B£® | -1 | C£® | -$\frac{1}{2}$ | D£® | -$\frac{3}{2}$ |
A£® | c=a£¬i¡Ü9 | B£® | b=c£¬i¡Ü9 | C£® | c=a£¬i¡Ü10 | D£® | b=c£¬i¡Ü10 |
A£® | 12+$\frac{4¦Ð}{3}$ | B£® | 12+$\frac{16¦Ð}{3}$ | C£® | 4+$\frac{16¦Ð}{3}$ | D£® | 4+$\frac{4¦Ð}{3}$ |
ʱ¼äx | 2 | 3 | 5 | 8 | 9 | 12 |
¹¤×Êy | 30 | 40 | 60 | 90 | 120 | m |
A£® | 112 | B£® | 240 | C£® | 376 | D£® | 484 |
A£® | $\frac{4}{3}$¦Ð | B£® | 7¦Ð | C£® | £¨5+$\sqrt{5}$£©¦Ð | D£® | £¨4+$\sqrt{5}$£©¦Ð |