ÌâÄ¿ÄÚÈÝ

10£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÒÔÍÖÔ²CµÄ×󶥵ãTΪԲÐÄ×÷Ô²T£º£¨x+2£©2+y2=r2£¨r£¾0£©£¬ÉèÔ²TÓëÍÖÔ²C½»ÓÚµãMÓëµãN£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPÊÇÍÖÔ²CÉÏÒìÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÇÒÖ±ÏßMP£¬NP·Ö±ðÓëxÖá½»ÓÚµãR£¬S£¬OΪ×ø±êÔ­µã£¬Çó|OR|+|OS|µÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃa=2£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬y0£©£¬ÇóµÃÖ±ÏßMP£¬NPµÄ·½³Ì£¬Áîy=0£¬ÇóµÃµãR£¬SµÄºá×ø±ê£¬½áºÏM£¬PÂú×ãÍÖÔ²·½³Ì£¬ÇóµÃR£¬SµÄºá×ø±êÖ®»ý£¬ÔÙÓÉ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×îСֵ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬µÃa=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àc=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©µãMÓëµãN¹ØÓÚxÖá¶Ô³Æ£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬y0£©
ÔòÖ±ÏßMPµÄ·½³ÌΪ£ºy-y0=$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$£¨x-x0£©£¬
Áîy=0£¬µÃxR=$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{y}_{0}-{y}_{1}}$£¬Í¬Àí£ºxS=$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{y}_{0}+{y}_{1}}$£¬
¹ÊxRxS=$\frac{{{x}_{1}}^{2}{{y}_{0}}^{2}-{{x}_{0}}^{2}{{y}_{1}}^{2}}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$ £¨**£© 
ÓÖµãMÓëµãPÔÚÍÖÔ²ÉÏ£¬¹Êx02=4£¨1-y02£©£¬x12=4£¨1-y12£©£¬
´úÈ루**£©Ê½£¬µÃ£º
xRxS=$\frac{4£¨1-{{y}_{1}}^{2}£©{{y}_{0}}^{2}-4£¨1-{{y}_{0}}^{2}£©{{y}_{1}}^{2}}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$=$\frac{4£¨{{y}_{0}}^{2}-{{y}_{1}}^{2}£©}{{{y}_{0}}^{2}-{{y}_{1}}^{2}}$=4
ËùÒÔ|OR|•|OS|=|xR|•|xS|=|xR•xS|=4£¬
|OR|+|OS|¡Ý2$\sqrt{|OR|•|OS|}$=4£¬
µ±ÇÒ½öµ±|OR|=|OS|=2£¬È¡µÃµÈºÅ£®
Ôò|OR|+|OS|µÄ×îСֵΪ4£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬×¢ÒâµãÂú×ãÍÖÔ²·½³Ì£¬Í¬Ê±¿¼²é»ù±¾²»µÈʽµÄÔËÓ㬾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø