题目内容
已知函数
,其中
.
(1)是否存在实数
,使得函数
在
上单调递增?若存在,求出的
值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为
,求函数的极大值。


(1)是否存在实数




(2)若a<0,且函数y=f(x)的极小值为

(1)存在a=
;(2)
.


试题分析:(1)利用导数求得函数单调递增


(1)∵

∴


由



∴Δ=(a+2)2-4(-2a2+4a)≤0,即(3a-2)2≤0,即a=


当a<0时,-2a>a-2,当x变化时,f′(x),f(x)的变化情况如下:
x | (-∞,a-2) | a-2 | (a-2,-2a) | -2a | (-2a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
由条件可知,f(-2a)=-




此时,f(x)=(x2-




练习册系列答案
相关题目