题目内容
已知函数,其中.
(1)是否存在实数,使得函数在上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。
(1)是否存在实数,使得函数在上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。
(1)存在a=;(2).
试题分析:(1)利用导数求得函数单调递增满足的条件;(2)先求出函数的两个极值点,根据a<0确定极大值与极小值点,由函数的极小值求得,再求出极大值.
(1)∵,
∴.
由可得≥0.即在x∈R时恒成立.
∴Δ=(a+2)2-4(-2a2+4a)≤0,即(3a-2)2≤0,即a=,此时,f′(x)=(x+)2ex≥0,函数y=f(x)在R上单调递增.(2)由f′(x)=0可得ex[x2+(a+2)x-2a2+4a]=0,解之得x1=-2a,x2=a-2.
当a<0时,-2a>a-2,当x变化时,f′(x),f(x)的变化情况如下:
x | (-∞,a-2) | a-2 | (a-2,-2a) | -2a | (-2a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
由条件可知,f(-2a)=-e,即3a·e-2a=-e,可得a=-.
此时,f(x)=(x2-x-2)ex,极大值为f(a-2)=f(-)=.
练习册系列答案
相关题目