题目内容

已知钝角的三边的长是3个连续的自然数,其中最大角为,则=_____                     

试题分析:不妨设三边满足a<b<c,满足a=n-1,b=n,c=n+1(n≥2,n∈N).根据余弦定理以及角C为钝角,建立关于n的不等式并解之可得0<n<4,再根据n为整数和构成三角形的条件,可得出本题答案。解:不妨设三边满足a<b<c,满足a=n-1,b=n,c=n+1(n≥2,n∈N).∵△ABC是钝角三角形,∴可得∠C为钝角,即cosC<0,由余弦定理得:(n+1)2=(n-1)2+n2-2n(n-1)•cosC>(n-1)2+n2,即(n-1)2+n2<(n+1)2,化简整理得n2-4n<0,解之得0<n<4,∵n≥2,n∈N,∴n=2,n=3,当n=2时,不能构成三角形,舍去,当n=3时,△ABC三边长分别为2,3,4,故答案为
点评:本题属于解三角形的题型,涉及的知识有三角形的边角关系,余弦函数的图象与性质以及余弦定理,属于基础题.灵活运用余弦定理解关于n的不等式,并且寻找整数解,是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网