题目内容
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 |
人教A版 |
人教B版 |
苏教版 |
北师大版 |
人数 |
20 |
15 |
5 |
10 |
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量
的分布列和数学期望。
(Ⅰ)
(Ⅱ)的分布列为
;
【解析】(Ⅰ)从50名教师随机选出2名的方法数为,
选出2人使用版本相同的方法数为,
故2人使用版本相同的概率为:。……6分
(Ⅱ)∵,
,
。
∴的分布列为
……12分
∴。……14分
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 5 | 10 |
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 5 | 10 |
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量
的分布列和数学期望。
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 |
人教A版 |
人教B版 |
苏教版 |
北师大版 |
人数 |
20 |
15 |
5 |
10 |
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的分布列.
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 5 | 10 |