题目内容

的内角A、B、C所对的边a、b、c满足,且C=60°,则ab的为
A.                 B.            C. 1             D.

A

解析试题分析:将(a+b)2-c2=4化为c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,再利用余弦定理得c2=a2+b2-2abcosC=a2+b2-ab即可求得答案。解:∵△ABC的边a、b、c满足(a+b)2-c2=4,∴c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab,∴2ab-4=-ab,ab=,故答案为A
考点:余弦定理
点评:本题考查余弦定理,考查代换与运算的能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网