题目内容
(02年北京卷文)已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是
A. B. C. D.
(02年北京卷文)(12分)
如图,在多面体ABCD―A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h..
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角正切值;
(Ⅱ)在估测该多面体的体积时,经常运用近似公式
V估=S中截面?h来计算.已知它的体积公式是
(S上底面+4S中截面+S下底面),
试判断V估与V的大小关系,并加以证明.
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)
(02年北京卷文)(13分)
已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:
.
(Ⅰ)求f(0),f(1)的值;
(Ⅱ)判断的奇偶性,并证明你的结论;
(Ⅲ)若,求证.
(02年北京卷文)已知的定义在(0,3)上的函数,的图象如图所示,那么不等式的解集是
A.(0,1)∪(2,3) B.
C. D.