题目内容
已知曲线C:xy=1
(1)将曲线C绕坐标原点逆时针旋转45°后,求得到的曲线C′的方程;
(2)求曲线C的焦点坐标和渐近线方程.
(1)将曲线C绕坐标原点逆时针旋转45°后,求得到的曲线C′的方程;
(2)求曲线C的焦点坐标和渐近线方程.
分析:(1)由题设条件求出旋转矩阵M=
,经过TM变换后
→
=
,代入曲线C的方程得y′2-x′2=2,从而求出所求;
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
|
|
|
|
|
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
解答:解 (1)由题设条件,M=
=
,
TM:
→
=
=
,即有
,
解得
,代入曲线C的方程为y′2-x′2=2.
所以将曲线C绕坐标原点逆时针旋转45°后,得到的曲线是y2-x2=2.…(5分)
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
曲线y2-x2=2的焦点坐标是(0,-2),(0,2),渐近线方程x±y=0,
变换矩阵N=
=
,
=
,
=
,
即曲线C的焦点坐标是(-
,-
),(
,
).而把直线x±y=0要原点顺时针旋转45°恰为y轴与x轴,因此曲线C的渐近线方程为x=0和y=0.…(10分)
|
|
TM:
|
|
|
|
|
|
解得
|
所以将曲线C绕坐标原点逆时针旋转45°后,得到的曲线是y2-x2=2.…(5分)
(2)由(1)知,只须把曲线y2-x2=2的焦点、渐近线绕坐标原点顺时针旋转45°后,即可得到曲线C的焦点坐标和渐近线方程.
曲线y2-x2=2的焦点坐标是(0,-2),(0,2),渐近线方程x±y=0,
变换矩阵N=
|
|
|
|
|
|
|
|
即曲线C的焦点坐标是(-
2 |
2 |
2 |
2 |
点评:本题主要考查了矩阵的应用,同时考查了旋转变换和双曲线的性质,属于基础题.
练习册系列答案
相关题目