题目内容
如图所示,在长方体
中,
,
,
是棱
上一点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355022375497.jpg)
(1)若
为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;
(2)是否存在这样的
,使得平面ABM⊥平面A1B1M,若存在,求出
的值;若不存在,请说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502128787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502143529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502174471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502190399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502221373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355022375497.jpg)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502190399.png)
(2)是否存在这样的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502190399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502315471.png)
(1)
。(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502533522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355025181164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502533522.png)
试题分析:(1)由于C1D1∥B1A1故根据异面直线所成角的定义可知∠MA1B1为异面直线A1M和C1D1所成的角然后在解三角形MA1B1求出∠MA1B1的正切值即可.
(Ⅱ)可根据题中条件设出点M的坐标,然后根据面面垂直,计算得出A1B1⊥BM,BM⊥B1M然后再根据面面垂直的判定定理即可得证.
解:(1)∵C1D1∥A1B1
∴∠B1A1M即为直线A1M和C1D1所成的角
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355025181164.png)
(2)建立坐标系:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502580523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502596528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502627615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502658597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502674686.png)
在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502705539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502830636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502845768.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502876682.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355028921089.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502908877.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502923289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502954708.png)
在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502970607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502986697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503017882.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503032693.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355030641150.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232355030791069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502923289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503126840.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503188595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503204663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235503220382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235502533522.png)
点评:解题的关键是要掌握异面直线所成角的定义(即将异面直线转化为相交直线所成的角)和面面垂直的判定定理。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目