题目内容
6.已知二项式 (1+2x)100的展开式为a0+a1x+a2x2+a3x3+…+a100x100,则log2(a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{100}}{{2}^{100}}$)=100.分析 令x=$\frac{1}{2}$,求得a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{100}}{{2}^{100}}$=2100 ,可得log2(a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{100}}{{2}^{100}}$)=${{log}_{2}2}^{100}$ 的值.
解答 解:令x=$\frac{1}{2}$,求得a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{100}}{{2}^{100}}$=2100 ,∴log2(a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{100}}{{2}^{100}}$)=${{log}_{2}2}^{100}$=100,
故答案为:100.
点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关题目
1.设函数f(x)=|lgx|,则关于x的方程f2(x)+mf(x)+n=0恰有三个不同实数解的充要条件是( )
A. | m<0且n<0 | B. | m>0且n<0 | C. | m<0且n=0 | D. | m>0且n=0 |
18.定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=f(5+x),则f(x)一定是( )
A. | 是偶函数,也是周期函数 | B. | 是偶函数,但不是周期函数 | ||
C. | 是奇函数,也是周期函数 | D. | 是奇函数,但不是周期函数 |
15.设全集U=R,M={x|y=2x+1},N={y|y=-x2},则M和N的关系是( )
A. | M$\underset{?}{≠}$N | B. | M∩N={(-1,1)} | C. | M=N | D. | N$\underset{?}{≠}$M |
16.下列函数是幂函数的是( )
A. | y=2x2 | B. | y=x3+x | C. | y=3x | D. | y=x3 |