题目内容
15.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理( )A. | 大前提错误 | B. | 小前提错误 | C. | 推理形式错误 | D. | 没有错误 |
分析 分析该演绎推理的大前提、小前提和结论,可以得出正确的答案.
解答 解:∵任何实数的平方大于0,因为a是实数,所以a2>0,
其中大前提是:任何实数的平方大于0是不正确的,
因为a=0时,a2=0,此时a2>0不成立,
所以大前提是错误的,致使得出的结论错误.
故选:A
点评 本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题
练习册系列答案
相关题目
3.在△ABC中,若BC=3,AC=4,AB=$\sqrt{13}$,则△ABC的面积等于( )
A. | 3$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 8$\sqrt{3}$ | D. | 10$\sqrt{3}$ |
7.设函数f(x)=$\frac{x}{sinx}$,则f′($\frac{π}{2}$)等于( )
A. | -$\frac{π}{2}$ | B. | $\frac{π}{2}$ | C. | 1 | D. | -1 |
4.某区高一年级的一次数学统考中,随机抽取M名同学的成绩,数据的分组统计表如下:
(1)求出表中m,n,M,N的值;
(2)若该区高一学生有5000人,试估计这次统考中该区高一学生的平均分数及分数在区间(60,90]内的人数.
分组 | 频数 | 频率 |
(40,50] | 2 | 0.02 |
(50.60] | 4 | 0.04 |
(60,70] | 11 | 0.11 |
(70,80] | 38 | 0.38 |
(80,90] | m | n |
(90,100] | 11 | 0.11 |
合计 | M | N |
(2)若该区高一学生有5000人,试估计这次统考中该区高一学生的平均分数及分数在区间(60,90]内的人数.