题目内容
已知不等式的解集为.
(1)求的值;
(2)若不等式的解集为,不等式的解集为,且,求实数的取值范围.
在等腰中,,腰长为2,、分别是边、的中点,将沿翻折,得到四棱锥,且为棱中点,.
(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在一点,使得平面?若存在,求二面角的余弦值,若不存在,请说明理由.
若集合,且,则集合可能是( )
A. B.
C. D.
已知函数的图象如图所示,则函数的图象可能是( )
某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为元,实验30天共投入实验费用17700元.
(1)求的值及平均每天耗资最少时实验的天数;
(2)现有某知名企业对该项实验进行赞助,实验天共赞助元.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)
已知是定义在上的增函数且满足恒成立,若对任意的,不等式恒成立,则当时,的取值范围是( )
A.(3,7) B.(9,25)
C.(13,49) D.(9,49)
设,则取最小值时的值为( )
A.1 B.2
C.4 D.8
定义区间、、、的长度均为,用表示不超过的最大整数,例如,.记,设,,若用表示不等式解集区间长度,则当时有( )
C. D.
已知两条直线平行,则___________.