题目内容
已知等差数列{an}的各项均为正数,观察程序框图:若n=3时,S=
;n=9时,S=
,则数列的通项公式为( )
3 |
7 |
9 |
19 |
分析:由框图所示S=S+
可得S=
+
+…+
,利用裂项可求和=
(
-
),由n=3,S=
(
-
)=
,n=9,S=
(
-
)=
,结合选项可知公差d=2,可求通项公式
1 |
aiai+1 |
1 |
a1a1 |
1 |
a2a3 |
1 |
anan+1 |
1 |
d |
1 |
a1 |
1 |
an+1 |
1 |
d |
1 |
a1 |
1 |
a4 |
3 |
7 |
1 |
d |
1 |
a1 |
1 |
a10 |
9 |
19 |
解答:解:由框图所示S=S+
可得
S=
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)
∵n=3,S=
(
-
)=
n=9,S=
(
-
)=
两式相减可得,
-
=(
-
)d
∴
=(
-
)d,结合选项可知公差d=2,
∴a4=7,a10=19
∴an=a4+(n-4)×2=2n-1
故选:A
1 |
aiai+1 |
S=
1 |
a1a1 |
1 |
a2a3 |
1 |
anan+1 |
=
1 |
d |
1 |
a1 |
1 |
a2 |
1 |
a2 |
1 |
a3 |
1 |
an |
1 |
an+1 |
=
1 |
d |
1 |
a1 |
1 |
an+1 |
∵n=3,S=
1 |
d |
1 |
a1 |
1 |
a4 |
3 |
7 |
n=9,S=
1 |
d |
1 |
a1 |
1 |
a10 |
9 |
19 |
两式相减可得,
1 |
a4 |
1 |
a10 |
9 |
19 |
3 |
7 |
∴
6d |
a4a10 |
9 |
19 |
3 |
7 |
∴a4=7,a10=19
∴an=a4+(n-4)×2=2n-1
故选:A
点评:本题主要考查了利用框图给出数列的和的递推公式,裂项法求数列的和,等差数列通项公式的应用,属于知识的简单综合运用.
练习册系列答案
相关题目