题目内容

已知等差数列{an}的各项均为正数,观察程序框图:若n=3时,S=
3
7
;n=9时,S=
9
19
,则数列的通项公式为(  )
分析:由框图所示S=S+
1
aiai+1
可得S=
1
a1a1
+
1
a2a3
+…+
1
anan+1
,利用裂项可求和=
1
d
(
1
a1
-
1
an+1
)
,由n=3,S=
1
d
(
1
a1
-
1
a4
)
=
3
7
,n=9,S=
1
d
1
a1
 -
1
a10
)
=
9
19
,结合选项可知公差d=2,可求通项公式
解答:解:由框图所示S=S+
1
aiai+1
可得
S=
1
a1a1
+
1
a2a3
+…+
1
anan+1

=
1
d
(
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1
)

=
1
d
(
1
a1
-
1
an+1
)

∵n=3,S=
1
d
(
1
a1
-
1
a4
)
=
3
7

n=9,S=
1
d
1
a1
 -
1
a10
)
=
9
19

两式相减可得,
1
a4
-
1
a10
=(
9
19
-
3
7
)d

6d
a4a10
=(
9
19
-
3
7
)d
,结合选项可知公差d=2,
∴a4=7,a10=19
∴an=a4+(n-4)×2=2n-1
故选:A
点评:本题主要考查了利用框图给出数列的和的递推公式,裂项法求数列的和,等差数列通项公式的应用,属于知识的简单综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网