题目内容
证明函数f(x)=x+在(0,1)上是减函数.
证明:(1)设0<x1<x2<1,则x2-x1>0,
f(x2)-f(x1)=(x2+)-(x1+)
=(x2-x1)+(-)=(x2-x1)+
=(x2-x1)(1-)=,
若0<x1<x2<1,则x1x2-1<0,
故f(x2)-f(x1)<0,∴f(x2)<f(x1).
∴f(x)=x+在(0,1)上是减函数.
练习册系列答案
相关题目
题目内容
证明函数f(x)=x+在(0,1)上是减函数.
证明:(1)设0<x1<x2<1,则x2-x1>0,
f(x2)-f(x1)=(x2+)-(x1+)
=(x2-x1)+(-)=(x2-x1)+
=(x2-x1)(1-)=,
若0<x1<x2<1,则x1x2-1<0,
故f(x2)-f(x1)<0,∴f(x2)<f(x1).
∴f(x)=x+在(0,1)上是减函数.