题目内容
(14分) 已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.(1)类比等差数列的定义给出“等和数列”的定义;(2) 已知数列是等和数列,且,公和为,求 的值,并猜出这个数列的通项公式(不要求证明)。
数列,满足
(1)求,并猜想通项公式。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到,,,,并猜想通项公式
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,等式成立。
②假设n=k时,成立,
那么当n=k+1时,
,所以当n=k+1时结论成立可证。
(1),,,并猜想通项公。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,等式成立。 …5分
, ……9分
所以
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n均成立