题目内容

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

【答案】(1) (2)过定点,(3)4

【解析】试题分析:(Ⅰ)先借助抛物线定义确定曲线的形状是抛物线,再确定参数,进而求出;(Ⅱ)先依据(Ⅰ)的结论分别建立的方程,再分别与抛物线联立方程组,求出弦中点为的坐标,最后借助斜率的变化确定直线经过定点;(Ⅲ)在(Ⅱ)前提条件下,先求出,然后建立面积关于变量的函数,再运用基本不等式求其最小值:

解:(Ⅰ)由题意可知:动点到定点的距离等于到定直线的距离.根据抛物线的定义可知,点的轨迹是抛物线.

,∴抛物线方程为:

(Ⅱ)设两点坐标分别为,则点的坐标为.

由题意可设直线的方程为.

,得.

.

因为直线与曲线两点,所以.

所以点的坐标为.

由题知,直线的斜率为,同理可得点的坐标为.

时,有,此时直线的斜率.

所以,直线的方程为,整理得.

于是,直线恒过定点

时,直线的方程为,也过点.

综上所述,直线恒过定点.

(Ⅲ)可求得.所以面积.

当且仅当时,“ ”成立,所以面积的最小值为4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网